--- license: mit task_categories: - image-classification language: - de tags: - food-waste - nutrition - image-data dataset_info: features: - name: bonid dtype: int64 - name: image dtype: image - name: Bon_ID sequence: int64 - name: Artikelnummer sequence: int64 - name: Artikel sequence: string - name: Stückartikel sequence: string - name: Anzahl_Kellen sequence: int64 - name: Gewicht_Kelle sequence: int64 - name: Gewicht_Teller sequence: int64 - name: kcal_Teller sequence: string - name: kj_Teller sequence: string - name: Fett_Teller sequence: string - name: ges_Fettsäuren_Teller sequence: string - name: Kohlenhydrate_Teller sequence: string - name: Zucker_Teller sequence: string - name: Eiweiß_Teller sequence: string - name: Salz_Teller sequence: string - name: Menge_Rückläufer sequence: float32 - name: Prozent_Rückläufer sequence: float32 - name: Gericht dtype: string - name: Portionsgröße dtype: string - name: Gewicht_vorher dtype: int64 - name: kcal_vorher dtype: string - name: kj_vorher dtype: string - name: Fett_vorher dtype: string - name: ges_Fettsäuren_vorher dtype: string - name: Kohlenhydrate_vorher dtype: string - name: Zucker_vorher dtype: string - name: Eiweiß_vorher dtype: string - name: Salz_vorher dtype: string - name: Gewicht_nachher dtype: int64 - name: kcal_nachher dtype: string - name: kj_nachher dtype: string - name: Fett_nachher dtype: string - name: ges_fettsäuren_nachher dtype: string - name: Kohlenhydrate_nachher dtype: string - name: Zucker_nachher dtype: string - name: Eiweiß_nachher dtype: string - name: Salz_nachher dtype: string splits: - name: train num_bytes: 51270168.0 num_examples: 215 - name: test num_bytes: 77496685.0 num_examples: 160 download_size: 51069023 dataset_size: 51270168.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Food Waste Dataset This dataset contains detailed information about food waste, including images and nutritional information. ## Dataset Description The dataset combines image data with detailed nutritional information for each meal and its ingredients. ### Features For each entry: - `bonid`: Unique identifier for each meal - `image`: Image of the meal - Lists per meal (multiple ingredients): - `Artikelnummer`: Article numbers - `Artikel`: Ingredient names - `Stückartikel`: Piece article information - `Anzahl_Kellen`: Number of portions - `Gewicht_Kelle`: Weight per portion - `Gewicht_Teller`: Weight per plate - `kcal_Teller`, `kj_Teller`: Caloric information - `Fett_Teller`, `ges_Fettsäuren_Teller`: Fat content - `Kohlenhydrate_Teller`, `Zucker_Teller`: Carbohydrate content - `Eiweiß_Teller`: Protein content - `Salz_Teller`: Salt content - `Menge_Rückläufer`, `Prozent_Rückläufer`: Return quantities Per image measurements: - Before consumption: - `Gewicht_vorher`: Initial weight - `kcal_vorher`, `kj_vorher`: Initial calories - `Fett_vorher`, `ges_Fettsäuren_vorher`: Initial fat content - `Kohlenhydrate_vorher`, `Zucker_vorher`: Initial carbohydrates - `Eiweiß_vorher`: Initial protein - `Salz_vorher`: Initial salt - After consumption: - `Gewicht_nachher`: Remaining weight - `kcal_nachher`, `kj_nachher`: Remaining calories - `Fett_nachher`, `ges_fettsäuren_nachher`: Remaining fat - `Kohlenhydrate_nachher`, `Zucker_nachher`: Remaining carbohydrates - `Eiweiß_nachher`: Remaining protein - `Salz_nachher`: Remaining salt ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("AI-ServicesBB/food-waste-dataset") # Access an example example = dataset['train'][0] # Get image and nutritional data image = example['image'] ingredients = example['Artikel'] weights = example['Gewicht_Teller'] calories = example['kcal_Teller'] # Get before/after measurements weight_before = example['Gewicht_vorher'] weight_after = example['Gewicht_nachher'] ``` ## Dataset Creation The dataset combines two main sources: 1. Ingredient-specific measurements for each meal 2. Before/after measurements with images for complete meals All numeric values are standardized to use decimal points (converted from German number format). ## Additional Information - Total number of entries: {len(dataset)} - Image format: JPEG - Measurements are in grams, calories, and standard nutritional units