AJosh commited on
Commit
0c38fe1
·
verified ·
1 Parent(s): 3055bf6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +93 -22
README.md CHANGED
@@ -1,22 +1,93 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: audio
5
- dtype:
6
- audio:
7
- sampling_rate: 16000
8
- decode: false
9
- - name: transcript
10
- dtype: string
11
- splits:
12
- - name: train
13
- num_bytes: 159562872.0
14
- num_examples: 197
15
- download_size: 118431359
16
- dataset_size: 159562872.0
17
- configs:
18
- - config_name: default
19
- data_files:
20
- - split: train
21
- path: data/train-*
22
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - automatic-speech-recognition
5
+ language:
6
+ - en
7
+ tags:
8
+ - audio
9
+ - speech
10
+ - transcription
11
+ - asr
12
+ - voice-recording
13
+ size_categories:
14
+ - n<1K
15
+ dataset_info:
16
+ features:
17
+ - name: audio
18
+ dtype: audio
19
+ sample_rate: 16000
20
+ - name: transcript
21
+ dtype: string
22
+ splits:
23
+ - name: train
24
+ num_examples: 197
25
+ ---
26
+
27
+ # Audio Transcription Dataset
28
+
29
+ This dataset contains 197 audio recordings with their corresponding transcriptions for automatic speech recognition (ASR) tasks.
30
+
31
+ ## Dataset Description
32
+
33
+ This dataset includes:
34
+ - **Audio files**: High-quality voice recordings (.wav format)
35
+ - **Transcriptions**: Accurate text transcriptions of the spoken content
36
+ - **Proper Audio feature type**: Ready for model training (not just file paths!)
37
+
38
+ ## Dataset Statistics
39
+
40
+ - **Total samples**: 197
41
+ - **Audio format**: WAV files at 16kHz sampling rate
42
+ - **Average transcript length**: 56.6 characters
43
+ - **Language**: English
44
+
45
+ ## Sample Data
46
+
47
+ | Audio File | Transcript |
48
+ |------------|------------|
49
+ | R1.wav | Hello, my name is Rocky. |
50
+ | R10.wav | I am speaking English for a voice recording. |
51
+ | R11.wav | This is a test sentence for training the model. |
52
+
53
+ ## Usage
54
+
55
+ ```python
56
+ from datasets import load_dataset
57
+
58
+ # Load the dataset
59
+ dataset = load_dataset("Aashish17405/audio-dataset")
60
+
61
+ # Access audio data (proper Audio type, not string!)
62
+ audio_sample = dataset['train'][0]['audio']
63
+ print(f"Sampling rate: {audio_sample['sampling_rate']}")
64
+ print(f"Audio array shape: {audio_sample['array'].shape}")
65
+ print(f"Transcript: {dataset['train'][0]['transcript']}")
66
+
67
+ # Ready for model training with transformers
68
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
69
+
70
+ processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
71
+ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
72
+
73
+ # Process audio
74
+ inputs = processor(audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt")
75
+ ```
76
+
77
+ ## Features
78
+
79
+ ✅ **Proper Audio Type**: Audio column shows as "Audio" feature, not "string"
80
+ ✅ **High Quality**: Clear voice recordings
81
+ ✅ **Diverse Content**: Various sentences and topics
82
+ ✅ **Training Ready**: Formatted for immediate use with speech models
83
+
84
+ ## Use Cases
85
+
86
+ - Fine-tuning speech recognition models (Whisper, Wav2Vec2, etc.)
87
+ - Voice training and accent recognition
88
+ - Speech-to-text model development
89
+ - Audio processing research
90
+
91
+ ## License
92
+
93
+ MIT License - Free to use for research and commercial purposes.