Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,22 +1,93 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- automatic-speech-recognition
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- audio
|
| 9 |
+
- speech
|
| 10 |
+
- transcription
|
| 11 |
+
- asr
|
| 12 |
+
- voice-recording
|
| 13 |
+
size_categories:
|
| 14 |
+
- n<1K
|
| 15 |
+
dataset_info:
|
| 16 |
+
features:
|
| 17 |
+
- name: audio
|
| 18 |
+
dtype: audio
|
| 19 |
+
sample_rate: 16000
|
| 20 |
+
- name: transcript
|
| 21 |
+
dtype: string
|
| 22 |
+
splits:
|
| 23 |
+
- name: train
|
| 24 |
+
num_examples: 197
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# Audio Transcription Dataset
|
| 28 |
+
|
| 29 |
+
This dataset contains 197 audio recordings with their corresponding transcriptions for automatic speech recognition (ASR) tasks.
|
| 30 |
+
|
| 31 |
+
## Dataset Description
|
| 32 |
+
|
| 33 |
+
This dataset includes:
|
| 34 |
+
- **Audio files**: High-quality voice recordings (.wav format)
|
| 35 |
+
- **Transcriptions**: Accurate text transcriptions of the spoken content
|
| 36 |
+
- **Proper Audio feature type**: Ready for model training (not just file paths!)
|
| 37 |
+
|
| 38 |
+
## Dataset Statistics
|
| 39 |
+
|
| 40 |
+
- **Total samples**: 197
|
| 41 |
+
- **Audio format**: WAV files at 16kHz sampling rate
|
| 42 |
+
- **Average transcript length**: 56.6 characters
|
| 43 |
+
- **Language**: English
|
| 44 |
+
|
| 45 |
+
## Sample Data
|
| 46 |
+
|
| 47 |
+
| Audio File | Transcript |
|
| 48 |
+
|------------|------------|
|
| 49 |
+
| R1.wav | Hello, my name is Rocky. |
|
| 50 |
+
| R10.wav | I am speaking English for a voice recording. |
|
| 51 |
+
| R11.wav | This is a test sentence for training the model. |
|
| 52 |
+
|
| 53 |
+
## Usage
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from datasets import load_dataset
|
| 57 |
+
|
| 58 |
+
# Load the dataset
|
| 59 |
+
dataset = load_dataset("Aashish17405/audio-dataset")
|
| 60 |
+
|
| 61 |
+
# Access audio data (proper Audio type, not string!)
|
| 62 |
+
audio_sample = dataset['train'][0]['audio']
|
| 63 |
+
print(f"Sampling rate: {audio_sample['sampling_rate']}")
|
| 64 |
+
print(f"Audio array shape: {audio_sample['array'].shape}")
|
| 65 |
+
print(f"Transcript: {dataset['train'][0]['transcript']}")
|
| 66 |
+
|
| 67 |
+
# Ready for model training with transformers
|
| 68 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 69 |
+
|
| 70 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
| 71 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
| 72 |
+
|
| 73 |
+
# Process audio
|
| 74 |
+
inputs = processor(audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt")
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
## Features
|
| 78 |
+
|
| 79 |
+
✅ **Proper Audio Type**: Audio column shows as "Audio" feature, not "string"
|
| 80 |
+
✅ **High Quality**: Clear voice recordings
|
| 81 |
+
✅ **Diverse Content**: Various sentences and topics
|
| 82 |
+
✅ **Training Ready**: Formatted for immediate use with speech models
|
| 83 |
+
|
| 84 |
+
## Use Cases
|
| 85 |
+
|
| 86 |
+
- Fine-tuning speech recognition models (Whisper, Wav2Vec2, etc.)
|
| 87 |
+
- Voice training and accent recognition
|
| 88 |
+
- Speech-to-text model development
|
| 89 |
+
- Audio processing research
|
| 90 |
+
|
| 91 |
+
## License
|
| 92 |
+
|
| 93 |
+
MIT License - Free to use for research and commercial purposes.
|