--- license: mit task_categories: - automatic-speech-recognition language: - en tags: - audio - speech - transcription - asr - voice-recording size_categories: - n<1K dataset_info: features: - name: audio dtype: audio sample_rate: 16000 - name: transcript dtype: string splits: - name: train num_examples: 99 --- # Audio Transcription Dataset This dataset contains 99 audio recordings with their corresponding transcriptions for automatic speech recognition (ASR) tasks. ## Dataset Description This dataset includes: - **Audio files**: High-quality voice recordings (.wav format) - **Transcriptions**: Accurate text transcriptions of the spoken content - **Proper Audio feature type**: Ready for model training (not just file paths!) ## Dataset Statistics - **Total samples**: 99 - **Audio format**: WAV files at 16kHz sampling rate - **Average transcript length**: 40.8 characters - **Language**: English ## Sample Data | Audio File | Transcript | |------------|------------| | R1.wav | my name is Rocky. | | R10.wav | I am speaking English for a voice recording. | | R11.wav | This is a test sentence for training the model. | ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("Aashish17405/audio-dataset") # Access audio data (proper Audio type, not string!) audio_sample = dataset['train'][0]['audio'] print(f"Sampling rate: {audio_sample['sampling_rate']}") print(f"Audio array shape: {audio_sample['array'].shape}") print(f"Transcript: {dataset['train'][0]['transcript']}") # Ready for model training with transformers from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") # Process audio inputs = processor(audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt") ``` ## Features ✅ **Proper Audio Type**: Audio column shows as "Audio" feature, not "string" ✅ **High Quality**: Clear voice recordings ✅ **Diverse Content**: Various sentences and topics ✅ **Training Ready**: Formatted for immediate use with speech models ## Use Cases - Fine-tuning speech recognition models (Whisper, Wav2Vec2, etc.) - Voice training and accent recognition - Speech-to-text model development - Audio processing research ## License MIT License - Free to use for research and commercial purposes.