--- configs: - config_name: Anaesthesia data_files: - split: test path: Anaesthesia.jsonl - config_name: Anatomy data_files: - split: test path: Anatomy.jsonl - config_name: Biochemistry data_files: - split: test path: Biochemistry.jsonl - config_name: Dental data_files: - split: test path: Dental.jsonl - config_name: ENT data_files: - split: test path: ENT.jsonl - config_name: Forensic Medicine data_files: - split: test path: Forensic Medicine.jsonl - config_name: Gynaecology & Obstetrics data_files: - split: test path: Gynaecology & Obstetrics.jsonl - config_name: Medicine data_files: - split: test path: Medicine.jsonl - config_name: Microbiology data_files: - split: test path: Microbiology.jsonl - config_name: Ophthalmology data_files: - split: test path: Ophthalmology.jsonl - config_name: Orthopedics data_files: - split: test path: Orthopedics.jsonl - config_name: Pathology data_files: - split: test path: Pathology.jsonl - config_name: Pediatrics data_files: - split: test path: Pediatrics.jsonl - config_name: Pharmacology data_files: - split: test path: Pharmacology.jsonl - config_name: Physiology data_files: - split: test path: Physiology.jsonl - config_name: Psychiatry data_files: - split: test path: Psychiatry.jsonl - config_name: Radiology data_files: - split: test path: Radiology.jsonl - config_name: Skin data_files: - split: test path: Skin.jsonl - config_name: Social & Preventive Medicine data_files: - split: test path: Social & Preventive Medicine.jsonl - config_name: Surgery data_files: - split: test path: Surgery.jsonl - config_name: Unknown data_files: - split: test path: Unknown.jsonl task_categories: - text-classification - question-answering - zero-shot-classification language: - en tags: - medical - chemistry - biology --- # Domain Adaptation of Large Language Models This repo contains the **Biomedicine Knowledge Probing dataset** used in our **ICLR 2024** paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530). We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**. ### 🤗 We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! 🤗 **************************** **Updates** **************************** * 2024/4/14: Released the medical knowledge probing dataset at [med_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/med_knowledge_prob) * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets * 2024/1/16: 🎉 Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!🎉 * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B. * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B. * 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B. ## Domain-Specific LLMs ### LLaMA-1-7B In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are: