--- dataset_info: features: - name: id dtype: int64 - name: image_id dtype: string - name: eng dtype: string - name: afr dtype: string - name: amh dtype: string - name: bem dtype: string - name: cjk dtype: string - name: dik dtype: string - name: dyu dtype: string - name: ewe dtype: string - name: fuv dtype: string - name: hau dtype: string - name: ibo dtype: string - name: kik dtype: string - name: kab dtype: string - name: kam dtype: string - name: kon dtype: string - name: kmb dtype: string - name: lua dtype: string - name: lug dtype: string - name: lin dtype: string - name: kin dtype: string - name: yor dtype: string splits: - name: train num_bytes: 12340971 num_examples: 8091 download_size: 5936673 dataset_size: 12340971 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - translation --- ## AfriMMD - African Multilingual Multimodal Dataset (POC) AfriMMD is a multilingual dataset created to enhance linguistic diversity in AI, focusing on African languages. This is a proof-of-concept experiment on the use of multimodal datasets to represent African languages in AI. The dataset contains translations of the captions in the widely-used Flickr8k dataset into 20 African languages. The goal is to address the underrepresentation of African languages in AI and foster more inclusive AI technologies. The image-text pairs have been carefully translated into multiple African languages, providing an avenue for advanced and inclusive AI development, particularly in multimodal tasks that involve both text and images. Images associated with the dataset can manually be downloaded from [Github](https://github.com/jbrownlee/Datasets/releases/tag/Flickr8k) or [Kaggle](https://www.kaggle.com/datasets/adityajn105/flickr8k?select=Images) ## Supported Languages Amharic (amh), Bemba (bem), Chokwe (cjk), Rek (dik), Dyula (dyu), Ewe (ewe), Fulfulde (fuv), Hausa (hau), Igbo (ibo), Kikuyu (kik), Kabyle (kab), Kamba (kam), Kikongo (kon), Kimbundu (kmb), LubaKasai (lua), Ganda (lug), Lingala (lin), Kinyarwanda (kin), Yoruba (yor) ## Load Dataset ```python from datasets import load_dataset dataset = load_dataset('AfriMM/AfriMMD') ``` ## Applications - Multilingual multimodal tasks (eg: image captioning in African languages, pre-trained vision-language models, etc.) - Translation and language learning for supported African languages. - Research on cross-cultural understanding and representation in AI. ## Citation ```bibtex @dataset{afrimm2024, author = {AfriMM - ML Collective}, title = {AfriMMD: Multimodal Dataset for African Languages}, year = 2024, url = {https://huggingface.co/datasets/AfriMM/AfriMMD} } ```