Alijeff1214
commited on
Upload folder using huggingface_hub
Browse files- All Cluster_tokenizer_plot.png +3 -0
- Final_tokenizer_plot.png +3 -0
- FineTune_16All1265068.out +648 -0
- FineTune_withPlots32k1115474.out +1071 -0
- General_tokenizer_plot.png +3 -0
All Cluster_tokenizer_plot.png
ADDED
Git LFS Details
|
Final_tokenizer_plot.png
ADDED
Git LFS Details
|
FineTune_16All1265068.out
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Checking label assignment:
|
3 |
+
|
4 |
+
Domain: Mathematics
|
5 |
+
Categories: cs.IT math.IT
|
6 |
+
Abstract: information embedding ie is the transmission of information within a host signal subject to a distor...
|
7 |
+
|
8 |
+
Domain: Computer Science
|
9 |
+
Categories: cs.CY
|
10 |
+
Abstract: according to socioconstructivism approach collective situations are promoted to favor learning in cl...
|
11 |
+
|
12 |
+
Domain: Physics
|
13 |
+
Categories: physics.pop-ph physics.optics
|
14 |
+
Abstract: a method is presented for generation of a subwavelength lambda longitudinally polarized beam which p...
|
15 |
+
|
16 |
+
Domain: Chemistry
|
17 |
+
Categories: nlin.PS
|
18 |
+
Abstract: rolls in finite prandtl number rotating convection with freeslip top and bottom boundary conditions ...
|
19 |
+
|
20 |
+
Domain: Statistics
|
21 |
+
Categories: stat.ME stat.CO
|
22 |
+
Abstract: in this paper we introduce a novel particle filter scheme for a class of partiallyobserved multivari...
|
23 |
+
|
24 |
+
Domain: Biology
|
25 |
+
Categories: q-bio.PE q-bio.CB quant-ph
|
26 |
+
Abstract: this is a supplement to the paper arxivqbio containing the text of correspondence sent to nature in...
|
27 |
+
|
28 |
+
Training with All Cluster tokenizer:
|
29 |
+
Vocabulary size: 16005
|
30 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
31 |
+
Initialized model with vocabulary size: 16005
|
32 |
+
Batch 0:
|
33 |
+
input_ids shape: torch.Size([16, 256])
|
34 |
+
attention_mask shape: torch.Size([16, 256])
|
35 |
+
labels shape: torch.Size([16])
|
36 |
+
input_ids max value: 16003
|
37 |
+
Vocab size: 16005
|
38 |
+
Batch 100:
|
39 |
+
input_ids shape: torch.Size([16, 256])
|
40 |
+
attention_mask shape: torch.Size([16, 256])
|
41 |
+
labels shape: torch.Size([16])
|
42 |
+
input_ids max value: 16003
|
43 |
+
Vocab size: 16005
|
44 |
+
Batch 200:
|
45 |
+
input_ids shape: torch.Size([16, 256])
|
46 |
+
attention_mask shape: torch.Size([16, 256])
|
47 |
+
labels shape: torch.Size([16])
|
48 |
+
input_ids max value: 16003
|
49 |
+
Vocab size: 16005
|
50 |
+
Batch 300:
|
51 |
+
input_ids shape: torch.Size([16, 256])
|
52 |
+
attention_mask shape: torch.Size([16, 256])
|
53 |
+
labels shape: torch.Size([16])
|
54 |
+
input_ids max value: 16003
|
55 |
+
Vocab size: 16005
|
56 |
+
Batch 400:
|
57 |
+
input_ids shape: torch.Size([16, 256])
|
58 |
+
attention_mask shape: torch.Size([16, 256])
|
59 |
+
labels shape: torch.Size([16])
|
60 |
+
input_ids max value: 16003
|
61 |
+
Vocab size: 16005
|
62 |
+
Batch 500:
|
63 |
+
input_ids shape: torch.Size([16, 256])
|
64 |
+
attention_mask shape: torch.Size([16, 256])
|
65 |
+
labels shape: torch.Size([16])
|
66 |
+
input_ids max value: 16003
|
67 |
+
Vocab size: 16005
|
68 |
+
Batch 600:
|
69 |
+
input_ids shape: torch.Size([16, 256])
|
70 |
+
attention_mask shape: torch.Size([16, 256])
|
71 |
+
labels shape: torch.Size([16])
|
72 |
+
input_ids max value: 16003
|
73 |
+
Vocab size: 16005
|
74 |
+
Batch 700:
|
75 |
+
input_ids shape: torch.Size([16, 256])
|
76 |
+
attention_mask shape: torch.Size([16, 256])
|
77 |
+
labels shape: torch.Size([16])
|
78 |
+
input_ids max value: 16003
|
79 |
+
Vocab size: 16005
|
80 |
+
Batch 800:
|
81 |
+
input_ids shape: torch.Size([16, 256])
|
82 |
+
attention_mask shape: torch.Size([16, 256])
|
83 |
+
labels shape: torch.Size([16])
|
84 |
+
input_ids max value: 16003
|
85 |
+
Vocab size: 16005
|
86 |
+
Batch 900:
|
87 |
+
input_ids shape: torch.Size([16, 256])
|
88 |
+
attention_mask shape: torch.Size([16, 256])
|
89 |
+
labels shape: torch.Size([16])
|
90 |
+
input_ids max value: 16003
|
91 |
+
Vocab size: 16005
|
92 |
+
Epoch 1/3:
|
93 |
+
Train Loss: 0.9143, Train Accuracy: 0.6955
|
94 |
+
Val Loss: 0.6986, Val Accuracy: 0.7743, Val F1: 0.7502
|
95 |
+
Batch 0:
|
96 |
+
input_ids shape: torch.Size([16, 256])
|
97 |
+
attention_mask shape: torch.Size([16, 256])
|
98 |
+
labels shape: torch.Size([16])
|
99 |
+
input_ids max value: 16003
|
100 |
+
Vocab size: 16005
|
101 |
+
Batch 100:
|
102 |
+
input_ids shape: torch.Size([16, 256])
|
103 |
+
attention_mask shape: torch.Size([16, 256])
|
104 |
+
labels shape: torch.Size([16])
|
105 |
+
input_ids max value: 16003
|
106 |
+
Vocab size: 16005
|
107 |
+
Batch 200:
|
108 |
+
input_ids shape: torch.Size([16, 256])
|
109 |
+
attention_mask shape: torch.Size([16, 256])
|
110 |
+
labels shape: torch.Size([16])
|
111 |
+
input_ids max value: 16003
|
112 |
+
Vocab size: 16005
|
113 |
+
Batch 300:
|
114 |
+
input_ids shape: torch.Size([16, 256])
|
115 |
+
attention_mask shape: torch.Size([16, 256])
|
116 |
+
labels shape: torch.Size([16])
|
117 |
+
input_ids max value: 16003
|
118 |
+
Vocab size: 16005
|
119 |
+
Batch 400:
|
120 |
+
input_ids shape: torch.Size([16, 256])
|
121 |
+
attention_mask shape: torch.Size([16, 256])
|
122 |
+
labels shape: torch.Size([16])
|
123 |
+
input_ids max value: 16003
|
124 |
+
Vocab size: 16005
|
125 |
+
Batch 500:
|
126 |
+
input_ids shape: torch.Size([16, 256])
|
127 |
+
attention_mask shape: torch.Size([16, 256])
|
128 |
+
labels shape: torch.Size([16])
|
129 |
+
input_ids max value: 16003
|
130 |
+
Vocab size: 16005
|
131 |
+
Batch 600:
|
132 |
+
input_ids shape: torch.Size([16, 256])
|
133 |
+
attention_mask shape: torch.Size([16, 256])
|
134 |
+
labels shape: torch.Size([16])
|
135 |
+
input_ids max value: 16003
|
136 |
+
Vocab size: 16005
|
137 |
+
Batch 700:
|
138 |
+
input_ids shape: torch.Size([16, 256])
|
139 |
+
attention_mask shape: torch.Size([16, 256])
|
140 |
+
labels shape: torch.Size([16])
|
141 |
+
input_ids max value: 16003
|
142 |
+
Vocab size: 16005
|
143 |
+
Batch 800:
|
144 |
+
input_ids shape: torch.Size([16, 256])
|
145 |
+
attention_mask shape: torch.Size([16, 256])
|
146 |
+
labels shape: torch.Size([16])
|
147 |
+
input_ids max value: 16003
|
148 |
+
Vocab size: 16005
|
149 |
+
Batch 900:
|
150 |
+
input_ids shape: torch.Size([16, 256])
|
151 |
+
attention_mask shape: torch.Size([16, 256])
|
152 |
+
labels shape: torch.Size([16])
|
153 |
+
input_ids max value: 16003
|
154 |
+
Vocab size: 16005
|
155 |
+
Epoch 2/3:
|
156 |
+
Train Loss: 0.6277, Train Accuracy: 0.7987
|
157 |
+
Val Loss: 0.6150, Val Accuracy: 0.8002, Val F1: 0.7753
|
158 |
+
Batch 0:
|
159 |
+
input_ids shape: torch.Size([16, 256])
|
160 |
+
attention_mask shape: torch.Size([16, 256])
|
161 |
+
labels shape: torch.Size([16])
|
162 |
+
input_ids max value: 16003
|
163 |
+
Vocab size: 16005
|
164 |
+
Batch 100:
|
165 |
+
input_ids shape: torch.Size([16, 256])
|
166 |
+
attention_mask shape: torch.Size([16, 256])
|
167 |
+
labels shape: torch.Size([16])
|
168 |
+
input_ids max value: 16003
|
169 |
+
Vocab size: 16005
|
170 |
+
Batch 200:
|
171 |
+
input_ids shape: torch.Size([16, 256])
|
172 |
+
attention_mask shape: torch.Size([16, 256])
|
173 |
+
labels shape: torch.Size([16])
|
174 |
+
input_ids max value: 16003
|
175 |
+
Vocab size: 16005
|
176 |
+
Batch 300:
|
177 |
+
input_ids shape: torch.Size([16, 256])
|
178 |
+
attention_mask shape: torch.Size([16, 256])
|
179 |
+
labels shape: torch.Size([16])
|
180 |
+
input_ids max value: 16003
|
181 |
+
Vocab size: 16005
|
182 |
+
Batch 400:
|
183 |
+
input_ids shape: torch.Size([16, 256])
|
184 |
+
attention_mask shape: torch.Size([16, 256])
|
185 |
+
labels shape: torch.Size([16])
|
186 |
+
input_ids max value: 16003
|
187 |
+
Vocab size: 16005
|
188 |
+
Batch 500:
|
189 |
+
input_ids shape: torch.Size([16, 256])
|
190 |
+
attention_mask shape: torch.Size([16, 256])
|
191 |
+
labels shape: torch.Size([16])
|
192 |
+
input_ids max value: 16003
|
193 |
+
Vocab size: 16005
|
194 |
+
Batch 600:
|
195 |
+
input_ids shape: torch.Size([16, 256])
|
196 |
+
attention_mask shape: torch.Size([16, 256])
|
197 |
+
labels shape: torch.Size([16])
|
198 |
+
input_ids max value: 16003
|
199 |
+
Vocab size: 16005
|
200 |
+
Batch 700:
|
201 |
+
input_ids shape: torch.Size([16, 256])
|
202 |
+
attention_mask shape: torch.Size([16, 256])
|
203 |
+
labels shape: torch.Size([16])
|
204 |
+
input_ids max value: 16003
|
205 |
+
Vocab size: 16005
|
206 |
+
Batch 800:
|
207 |
+
input_ids shape: torch.Size([16, 256])
|
208 |
+
attention_mask shape: torch.Size([16, 256])
|
209 |
+
labels shape: torch.Size([16])
|
210 |
+
input_ids max value: 16003
|
211 |
+
Vocab size: 16005
|
212 |
+
Batch 900:
|
213 |
+
input_ids shape: torch.Size([16, 256])
|
214 |
+
attention_mask shape: torch.Size([16, 256])
|
215 |
+
labels shape: torch.Size([16])
|
216 |
+
input_ids max value: 16003
|
217 |
+
Vocab size: 16005
|
218 |
+
Epoch 3/3:
|
219 |
+
Train Loss: 0.5085, Train Accuracy: 0.8373
|
220 |
+
Val Loss: 0.6998, Val Accuracy: 0.7784, Val F1: 0.7468
|
221 |
+
|
222 |
+
Test Results for All Cluster tokenizer:
|
223 |
+
Accuracy: 0.7781
|
224 |
+
F1 Score: 0.7465
|
225 |
+
AUC-ROC: 0.8821
|
226 |
+
|
227 |
+
Training with Final tokenizer:
|
228 |
+
Vocabulary size: 15047
|
229 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
230 |
+
Initialized model with vocabulary size: 15047
|
231 |
+
Batch 0:
|
232 |
+
input_ids shape: torch.Size([16, 256])
|
233 |
+
attention_mask shape: torch.Size([16, 256])
|
234 |
+
labels shape: torch.Size([16])
|
235 |
+
input_ids max value: 15046
|
236 |
+
Vocab size: 15047
|
237 |
+
Batch 100:
|
238 |
+
input_ids shape: torch.Size([16, 256])
|
239 |
+
attention_mask shape: torch.Size([16, 256])
|
240 |
+
labels shape: torch.Size([16])
|
241 |
+
input_ids max value: 15046
|
242 |
+
Vocab size: 15047
|
243 |
+
Batch 200:
|
244 |
+
input_ids shape: torch.Size([16, 256])
|
245 |
+
attention_mask shape: torch.Size([16, 256])
|
246 |
+
labels shape: torch.Size([16])
|
247 |
+
input_ids max value: 15046
|
248 |
+
Vocab size: 15047
|
249 |
+
Batch 300:
|
250 |
+
input_ids shape: torch.Size([16, 256])
|
251 |
+
attention_mask shape: torch.Size([16, 256])
|
252 |
+
labels shape: torch.Size([16])
|
253 |
+
input_ids max value: 15046
|
254 |
+
Vocab size: 15047
|
255 |
+
Batch 400:
|
256 |
+
input_ids shape: torch.Size([16, 256])
|
257 |
+
attention_mask shape: torch.Size([16, 256])
|
258 |
+
labels shape: torch.Size([16])
|
259 |
+
input_ids max value: 15046
|
260 |
+
Vocab size: 15047
|
261 |
+
Batch 500:
|
262 |
+
input_ids shape: torch.Size([16, 256])
|
263 |
+
attention_mask shape: torch.Size([16, 256])
|
264 |
+
labels shape: torch.Size([16])
|
265 |
+
input_ids max value: 15046
|
266 |
+
Vocab size: 15047
|
267 |
+
Batch 600:
|
268 |
+
input_ids shape: torch.Size([16, 256])
|
269 |
+
attention_mask shape: torch.Size([16, 256])
|
270 |
+
labels shape: torch.Size([16])
|
271 |
+
input_ids max value: 15046
|
272 |
+
Vocab size: 15047
|
273 |
+
Batch 700:
|
274 |
+
input_ids shape: torch.Size([16, 256])
|
275 |
+
attention_mask shape: torch.Size([16, 256])
|
276 |
+
labels shape: torch.Size([16])
|
277 |
+
input_ids max value: 15046
|
278 |
+
Vocab size: 15047
|
279 |
+
Batch 800:
|
280 |
+
input_ids shape: torch.Size([16, 256])
|
281 |
+
attention_mask shape: torch.Size([16, 256])
|
282 |
+
labels shape: torch.Size([16])
|
283 |
+
input_ids max value: 15046
|
284 |
+
Vocab size: 15047
|
285 |
+
Batch 900:
|
286 |
+
input_ids shape: torch.Size([16, 256])
|
287 |
+
attention_mask shape: torch.Size([16, 256])
|
288 |
+
labels shape: torch.Size([16])
|
289 |
+
input_ids max value: 15046
|
290 |
+
Vocab size: 15047
|
291 |
+
Epoch 1/3:
|
292 |
+
Train Loss: 0.9914, Train Accuracy: 0.6629
|
293 |
+
Val Loss: 0.8531, Val Accuracy: 0.7224, Val F1: 0.6560
|
294 |
+
Batch 0:
|
295 |
+
input_ids shape: torch.Size([16, 256])
|
296 |
+
attention_mask shape: torch.Size([16, 256])
|
297 |
+
labels shape: torch.Size([16])
|
298 |
+
input_ids max value: 15046
|
299 |
+
Vocab size: 15047
|
300 |
+
Batch 100:
|
301 |
+
input_ids shape: torch.Size([16, 256])
|
302 |
+
attention_mask shape: torch.Size([16, 256])
|
303 |
+
labels shape: torch.Size([16])
|
304 |
+
input_ids max value: 15046
|
305 |
+
Vocab size: 15047
|
306 |
+
Batch 200:
|
307 |
+
input_ids shape: torch.Size([16, 256])
|
308 |
+
attention_mask shape: torch.Size([16, 256])
|
309 |
+
labels shape: torch.Size([16])
|
310 |
+
input_ids max value: 15046
|
311 |
+
Vocab size: 15047
|
312 |
+
Batch 300:
|
313 |
+
input_ids shape: torch.Size([16, 256])
|
314 |
+
attention_mask shape: torch.Size([16, 256])
|
315 |
+
labels shape: torch.Size([16])
|
316 |
+
input_ids max value: 15046
|
317 |
+
Vocab size: 15047
|
318 |
+
Batch 400:
|
319 |
+
input_ids shape: torch.Size([16, 256])
|
320 |
+
attention_mask shape: torch.Size([16, 256])
|
321 |
+
labels shape: torch.Size([16])
|
322 |
+
input_ids max value: 15046
|
323 |
+
Vocab size: 15047
|
324 |
+
Batch 500:
|
325 |
+
input_ids shape: torch.Size([16, 256])
|
326 |
+
attention_mask shape: torch.Size([16, 256])
|
327 |
+
labels shape: torch.Size([16])
|
328 |
+
input_ids max value: 15046
|
329 |
+
Vocab size: 15047
|
330 |
+
Batch 600:
|
331 |
+
input_ids shape: torch.Size([16, 256])
|
332 |
+
attention_mask shape: torch.Size([16, 256])
|
333 |
+
labels shape: torch.Size([16])
|
334 |
+
input_ids max value: 15046
|
335 |
+
Vocab size: 15047
|
336 |
+
Batch 700:
|
337 |
+
input_ids shape: torch.Size([16, 256])
|
338 |
+
attention_mask shape: torch.Size([16, 256])
|
339 |
+
labels shape: torch.Size([16])
|
340 |
+
input_ids max value: 15046
|
341 |
+
Vocab size: 15047
|
342 |
+
Batch 800:
|
343 |
+
input_ids shape: torch.Size([16, 256])
|
344 |
+
attention_mask shape: torch.Size([16, 256])
|
345 |
+
labels shape: torch.Size([16])
|
346 |
+
input_ids max value: 15046
|
347 |
+
Vocab size: 15047
|
348 |
+
Batch 900:
|
349 |
+
input_ids shape: torch.Size([16, 256])
|
350 |
+
attention_mask shape: torch.Size([16, 256])
|
351 |
+
labels shape: torch.Size([16])
|
352 |
+
input_ids max value: 15046
|
353 |
+
Vocab size: 15047
|
354 |
+
Epoch 2/3:
|
355 |
+
Train Loss: 0.7899, Train Accuracy: 0.7359
|
356 |
+
Val Loss: 0.7491, Val Accuracy: 0.7516, Val F1: 0.7260
|
357 |
+
Batch 0:
|
358 |
+
input_ids shape: torch.Size([16, 256])
|
359 |
+
attention_mask shape: torch.Size([16, 256])
|
360 |
+
labels shape: torch.Size([16])
|
361 |
+
input_ids max value: 15046
|
362 |
+
Vocab size: 15047
|
363 |
+
Batch 100:
|
364 |
+
input_ids shape: torch.Size([16, 256])
|
365 |
+
attention_mask shape: torch.Size([16, 256])
|
366 |
+
labels shape: torch.Size([16])
|
367 |
+
input_ids max value: 15046
|
368 |
+
Vocab size: 15047
|
369 |
+
Batch 200:
|
370 |
+
input_ids shape: torch.Size([16, 256])
|
371 |
+
attention_mask shape: torch.Size([16, 256])
|
372 |
+
labels shape: torch.Size([16])
|
373 |
+
input_ids max value: 15046
|
374 |
+
Vocab size: 15047
|
375 |
+
Batch 300:
|
376 |
+
input_ids shape: torch.Size([16, 256])
|
377 |
+
attention_mask shape: torch.Size([16, 256])
|
378 |
+
labels shape: torch.Size([16])
|
379 |
+
input_ids max value: 15046
|
380 |
+
Vocab size: 15047
|
381 |
+
Batch 400:
|
382 |
+
input_ids shape: torch.Size([16, 256])
|
383 |
+
attention_mask shape: torch.Size([16, 256])
|
384 |
+
labels shape: torch.Size([16])
|
385 |
+
input_ids max value: 15046
|
386 |
+
Vocab size: 15047
|
387 |
+
Batch 500:
|
388 |
+
input_ids shape: torch.Size([16, 256])
|
389 |
+
attention_mask shape: torch.Size([16, 256])
|
390 |
+
labels shape: torch.Size([16])
|
391 |
+
input_ids max value: 15046
|
392 |
+
Vocab size: 15047
|
393 |
+
Batch 600:
|
394 |
+
input_ids shape: torch.Size([16, 256])
|
395 |
+
attention_mask shape: torch.Size([16, 256])
|
396 |
+
labels shape: torch.Size([16])
|
397 |
+
input_ids max value: 15046
|
398 |
+
Vocab size: 15047
|
399 |
+
Batch 700:
|
400 |
+
input_ids shape: torch.Size([16, 256])
|
401 |
+
attention_mask shape: torch.Size([16, 256])
|
402 |
+
labels shape: torch.Size([16])
|
403 |
+
input_ids max value: 15046
|
404 |
+
Vocab size: 15047
|
405 |
+
Batch 800:
|
406 |
+
input_ids shape: torch.Size([16, 256])
|
407 |
+
attention_mask shape: torch.Size([16, 256])
|
408 |
+
labels shape: torch.Size([16])
|
409 |
+
input_ids max value: 15046
|
410 |
+
Vocab size: 15047
|
411 |
+
Batch 900:
|
412 |
+
input_ids shape: torch.Size([16, 256])
|
413 |
+
attention_mask shape: torch.Size([16, 256])
|
414 |
+
labels shape: torch.Size([16])
|
415 |
+
input_ids max value: 15046
|
416 |
+
Vocab size: 15047
|
417 |
+
Epoch 3/3:
|
418 |
+
Train Loss: 0.6774, Train Accuracy: 0.7784
|
419 |
+
Val Loss: 0.7340, Val Accuracy: 0.7557, Val F1: 0.7386
|
420 |
+
|
421 |
+
Test Results for Final tokenizer:
|
422 |
+
Accuracy: 0.7560
|
423 |
+
F1 Score: 0.7388
|
424 |
+
AUC-ROC: 0.8423
|
425 |
+
|
426 |
+
Training with General tokenizer:
|
427 |
+
Vocabulary size: 16000
|
428 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
429 |
+
Initialized model with vocabulary size: 16000
|
430 |
+
Batch 0:
|
431 |
+
input_ids shape: torch.Size([16, 256])
|
432 |
+
attention_mask shape: torch.Size([16, 256])
|
433 |
+
labels shape: torch.Size([16])
|
434 |
+
input_ids max value: 15945
|
435 |
+
Vocab size: 16000
|
436 |
+
Batch 100:
|
437 |
+
input_ids shape: torch.Size([16, 256])
|
438 |
+
attention_mask shape: torch.Size([16, 256])
|
439 |
+
labels shape: torch.Size([16])
|
440 |
+
input_ids max value: 15973
|
441 |
+
Vocab size: 16000
|
442 |
+
Batch 200:
|
443 |
+
input_ids shape: torch.Size([16, 256])
|
444 |
+
attention_mask shape: torch.Size([16, 256])
|
445 |
+
labels shape: torch.Size([16])
|
446 |
+
input_ids max value: 15973
|
447 |
+
Vocab size: 16000
|
448 |
+
Batch 300:
|
449 |
+
input_ids shape: torch.Size([16, 256])
|
450 |
+
attention_mask shape: torch.Size([16, 256])
|
451 |
+
labels shape: torch.Size([16])
|
452 |
+
input_ids max value: 15984
|
453 |
+
Vocab size: 16000
|
454 |
+
Batch 400:
|
455 |
+
input_ids shape: torch.Size([16, 256])
|
456 |
+
attention_mask shape: torch.Size([16, 256])
|
457 |
+
labels shape: torch.Size([16])
|
458 |
+
input_ids max value: 15973
|
459 |
+
Vocab size: 16000
|
460 |
+
Batch 500:
|
461 |
+
input_ids shape: torch.Size([16, 256])
|
462 |
+
attention_mask shape: torch.Size([16, 256])
|
463 |
+
labels shape: torch.Size([16])
|
464 |
+
input_ids max value: 15973
|
465 |
+
Vocab size: 16000
|
466 |
+
Batch 600:
|
467 |
+
input_ids shape: torch.Size([16, 256])
|
468 |
+
attention_mask shape: torch.Size([16, 256])
|
469 |
+
labels shape: torch.Size([16])
|
470 |
+
input_ids max value: 15985
|
471 |
+
Vocab size: 16000
|
472 |
+
Batch 700:
|
473 |
+
input_ids shape: torch.Size([16, 256])
|
474 |
+
attention_mask shape: torch.Size([16, 256])
|
475 |
+
labels shape: torch.Size([16])
|
476 |
+
input_ids max value: 15985
|
477 |
+
Vocab size: 16000
|
478 |
+
Batch 800:
|
479 |
+
input_ids shape: torch.Size([16, 256])
|
480 |
+
attention_mask shape: torch.Size([16, 256])
|
481 |
+
labels shape: torch.Size([16])
|
482 |
+
input_ids max value: 15973
|
483 |
+
Vocab size: 16000
|
484 |
+
Batch 900:
|
485 |
+
input_ids shape: torch.Size([16, 256])
|
486 |
+
attention_mask shape: torch.Size([16, 256])
|
487 |
+
labels shape: torch.Size([16])
|
488 |
+
input_ids max value: 15901
|
489 |
+
Vocab size: 16000
|
490 |
+
Epoch 1/3:
|
491 |
+
Train Loss: 0.8970, Train Accuracy: 0.7058
|
492 |
+
Val Loss: 0.7586, Val Accuracy: 0.7604, Val F1: 0.6892
|
493 |
+
Batch 0:
|
494 |
+
input_ids shape: torch.Size([16, 256])
|
495 |
+
attention_mask shape: torch.Size([16, 256])
|
496 |
+
labels shape: torch.Size([16])
|
497 |
+
input_ids max value: 15873
|
498 |
+
Vocab size: 16000
|
499 |
+
Batch 100:
|
500 |
+
input_ids shape: torch.Size([16, 256])
|
501 |
+
attention_mask shape: torch.Size([16, 256])
|
502 |
+
labels shape: torch.Size([16])
|
503 |
+
input_ids max value: 15950
|
504 |
+
Vocab size: 16000
|
505 |
+
Batch 200:
|
506 |
+
input_ids shape: torch.Size([16, 256])
|
507 |
+
attention_mask shape: torch.Size([16, 256])
|
508 |
+
labels shape: torch.Size([16])
|
509 |
+
input_ids max value: 15985
|
510 |
+
Vocab size: 16000
|
511 |
+
Batch 300:
|
512 |
+
input_ids shape: torch.Size([16, 256])
|
513 |
+
attention_mask shape: torch.Size([16, 256])
|
514 |
+
labels shape: torch.Size([16])
|
515 |
+
input_ids max value: 15973
|
516 |
+
Vocab size: 16000
|
517 |
+
Batch 400:
|
518 |
+
input_ids shape: torch.Size([16, 256])
|
519 |
+
attention_mask shape: torch.Size([16, 256])
|
520 |
+
labels shape: torch.Size([16])
|
521 |
+
input_ids max value: 15985
|
522 |
+
Vocab size: 16000
|
523 |
+
Batch 500:
|
524 |
+
input_ids shape: torch.Size([16, 256])
|
525 |
+
attention_mask shape: torch.Size([16, 256])
|
526 |
+
labels shape: torch.Size([16])
|
527 |
+
input_ids max value: 15992
|
528 |
+
Vocab size: 16000
|
529 |
+
Batch 600:
|
530 |
+
input_ids shape: torch.Size([16, 256])
|
531 |
+
attention_mask shape: torch.Size([16, 256])
|
532 |
+
labels shape: torch.Size([16])
|
533 |
+
input_ids max value: 15928
|
534 |
+
Vocab size: 16000
|
535 |
+
Batch 700:
|
536 |
+
input_ids shape: torch.Size([16, 256])
|
537 |
+
attention_mask shape: torch.Size([16, 256])
|
538 |
+
labels shape: torch.Size([16])
|
539 |
+
input_ids max value: 15980
|
540 |
+
Vocab size: 16000
|
541 |
+
Batch 800:
|
542 |
+
input_ids shape: torch.Size([16, 256])
|
543 |
+
attention_mask shape: torch.Size([16, 256])
|
544 |
+
labels shape: torch.Size([16])
|
545 |
+
input_ids max value: 15973
|
546 |
+
Vocab size: 16000
|
547 |
+
Batch 900:
|
548 |
+
input_ids shape: torch.Size([16, 256])
|
549 |
+
attention_mask shape: torch.Size([16, 256])
|
550 |
+
labels shape: torch.Size([16])
|
551 |
+
input_ids max value: 15973
|
552 |
+
Vocab size: 16000
|
553 |
+
Epoch 2/3:
|
554 |
+
Train Loss: 0.6461, Train Accuracy: 0.7883
|
555 |
+
Val Loss: 0.5972, Val Accuracy: 0.8024, Val F1: 0.7585
|
556 |
+
Batch 0:
|
557 |
+
input_ids shape: torch.Size([16, 256])
|
558 |
+
attention_mask shape: torch.Size([16, 256])
|
559 |
+
labels shape: torch.Size([16])
|
560 |
+
input_ids max value: 15973
|
561 |
+
Vocab size: 16000
|
562 |
+
Batch 100:
|
563 |
+
input_ids shape: torch.Size([16, 256])
|
564 |
+
attention_mask shape: torch.Size([16, 256])
|
565 |
+
labels shape: torch.Size([16])
|
566 |
+
input_ids max value: 15871
|
567 |
+
Vocab size: 16000
|
568 |
+
Batch 200:
|
569 |
+
input_ids shape: torch.Size([16, 256])
|
570 |
+
attention_mask shape: torch.Size([16, 256])
|
571 |
+
labels shape: torch.Size([16])
|
572 |
+
input_ids max value: 15985
|
573 |
+
Vocab size: 16000
|
574 |
+
Batch 300:
|
575 |
+
input_ids shape: torch.Size([16, 256])
|
576 |
+
attention_mask shape: torch.Size([16, 256])
|
577 |
+
labels shape: torch.Size([16])
|
578 |
+
input_ids max value: 15973
|
579 |
+
Vocab size: 16000
|
580 |
+
Batch 400:
|
581 |
+
input_ids shape: torch.Size([16, 256])
|
582 |
+
attention_mask shape: torch.Size([16, 256])
|
583 |
+
labels shape: torch.Size([16])
|
584 |
+
input_ids max value: 15987
|
585 |
+
Vocab size: 16000
|
586 |
+
Batch 500:
|
587 |
+
input_ids shape: torch.Size([16, 256])
|
588 |
+
attention_mask shape: torch.Size([16, 256])
|
589 |
+
labels shape: torch.Size([16])
|
590 |
+
input_ids max value: 15973
|
591 |
+
Vocab size: 16000
|
592 |
+
Batch 600:
|
593 |
+
input_ids shape: torch.Size([16, 256])
|
594 |
+
attention_mask shape: torch.Size([16, 256])
|
595 |
+
labels shape: torch.Size([16])
|
596 |
+
input_ids max value: 15973
|
597 |
+
Vocab size: 16000
|
598 |
+
Batch 700:
|
599 |
+
input_ids shape: torch.Size([16, 256])
|
600 |
+
attention_mask shape: torch.Size([16, 256])
|
601 |
+
labels shape: torch.Size([16])
|
602 |
+
input_ids max value: 15973
|
603 |
+
Vocab size: 16000
|
604 |
+
Batch 800:
|
605 |
+
input_ids shape: torch.Size([16, 256])
|
606 |
+
attention_mask shape: torch.Size([16, 256])
|
607 |
+
labels shape: torch.Size([16])
|
608 |
+
input_ids max value: 15973
|
609 |
+
Vocab size: 16000
|
610 |
+
Batch 900:
|
611 |
+
input_ids shape: torch.Size([16, 256])
|
612 |
+
attention_mask shape: torch.Size([16, 256])
|
613 |
+
labels shape: torch.Size([16])
|
614 |
+
input_ids max value: 15956
|
615 |
+
Vocab size: 16000
|
616 |
+
Epoch 3/3:
|
617 |
+
Train Loss: 0.5426, Train Accuracy: 0.8275
|
618 |
+
Val Loss: 0.5413, Val Accuracy: 0.8275, Val F1: 0.7986
|
619 |
+
|
620 |
+
Test Results for General tokenizer:
|
621 |
+
Accuracy: 0.8281
|
622 |
+
F1 Score: 0.7992
|
623 |
+
AUC-ROC: 0.8504
|
624 |
+
|
625 |
+
Summary of Results:
|
626 |
+
|
627 |
+
All Cluster Tokenizer:
|
628 |
+
Accuracy: 0.7781
|
629 |
+
F1 Score: 0.7465
|
630 |
+
AUC-ROC: 0.8821
|
631 |
+
|
632 |
+
Final Tokenizer:
|
633 |
+
Accuracy: 0.7560
|
634 |
+
F1 Score: 0.7388
|
635 |
+
AUC-ROC: 0.8423
|
636 |
+
|
637 |
+
General Tokenizer:
|
638 |
+
Accuracy: 0.8281
|
639 |
+
F1 Score: 0.7992
|
640 |
+
AUC-ROC: 0.8504
|
641 |
+
|
642 |
+
Class distribution in training set:
|
643 |
+
Class Biology: 439 samples
|
644 |
+
Class Chemistry: 454 samples
|
645 |
+
Class Computer Science: 1358 samples
|
646 |
+
Class Mathematics: 9480 samples
|
647 |
+
Class Physics: 2733 samples
|
648 |
+
Class Statistics: 200 samples
|
FineTune_withPlots32k1115474.out
ADDED
@@ -0,0 +1,1071 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Loading pytorch-gpu/py3/2.1.1
|
2 |
+
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
|
3 |
+
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
|
4 |
+
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
|
5 |
+
+ HF_DATASETS_OFFLINE=1
|
6 |
+
+ TRANSFORMERS_OFFLINE=1
|
7 |
+
+ python3 FIneTune_withPlots.py
|
8 |
+
|
9 |
+
Checking label assignment:
|
10 |
+
|
11 |
+
Domain: Mathematics
|
12 |
+
Categories: math.OA math.PR
|
13 |
+
Abstract: we study the distributional behavior for products and for sums of boolean independent random variabl...
|
14 |
+
|
15 |
+
Domain: Computer Science
|
16 |
+
Categories: cs.CL physics.soc-ph
|
17 |
+
Abstract: zipfs law states that if words of language are ranked in the order of decreasing frequency in texts ...
|
18 |
+
|
19 |
+
Domain: Physics
|
20 |
+
Categories: physics.atom-ph
|
21 |
+
Abstract: the effects of parity and time reversal violating potential in particular the tensorpseudotensor ele...
|
22 |
+
|
23 |
+
Domain: Chemistry
|
24 |
+
Categories: nlin.AO
|
25 |
+
Abstract: over a period of approximately five years pankaj ghemawat of harvard business school and daniel levi...
|
26 |
+
|
27 |
+
Domain: Statistics
|
28 |
+
Categories: stat.AP
|
29 |
+
Abstract: we consider data consisting of photon counts of diffracted xray radiation as a function of the angle...
|
30 |
+
|
31 |
+
Domain: Biology
|
32 |
+
Categories: q-bio.PE q-bio.GN
|
33 |
+
Abstract: this paper develops simplified mathematical models describing the mutationselection balance for the ...
|
34 |
+
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
|
35 |
+
warnings.warn(
|
36 |
+
|
37 |
+
Training with All Cluster tokenizer:
|
38 |
+
Vocabulary size: 29376
|
39 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
40 |
+
Initialized model with vocabulary size: 29376
|
41 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
42 |
+
scaler = amp.GradScaler()
|
43 |
+
Batch 0:
|
44 |
+
input_ids shape: torch.Size([16, 256])
|
45 |
+
attention_mask shape: torch.Size([16, 256])
|
46 |
+
labels shape: torch.Size([16])
|
47 |
+
input_ids max value: 29374
|
48 |
+
Vocab size: 29376
|
49 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
50 |
+
with amp.autocast():
|
51 |
+
Batch 100:
|
52 |
+
input_ids shape: torch.Size([16, 256])
|
53 |
+
attention_mask shape: torch.Size([16, 256])
|
54 |
+
labels shape: torch.Size([16])
|
55 |
+
input_ids max value: 29374
|
56 |
+
Vocab size: 29376
|
57 |
+
Batch 200:
|
58 |
+
input_ids shape: torch.Size([16, 256])
|
59 |
+
attention_mask shape: torch.Size([16, 256])
|
60 |
+
labels shape: torch.Size([16])
|
61 |
+
input_ids max value: 29374
|
62 |
+
Vocab size: 29376
|
63 |
+
Batch 300:
|
64 |
+
input_ids shape: torch.Size([16, 256])
|
65 |
+
attention_mask shape: torch.Size([16, 256])
|
66 |
+
labels shape: torch.Size([16])
|
67 |
+
input_ids max value: 29374
|
68 |
+
Vocab size: 29376
|
69 |
+
Batch 400:
|
70 |
+
input_ids shape: torch.Size([16, 256])
|
71 |
+
attention_mask shape: torch.Size([16, 256])
|
72 |
+
labels shape: torch.Size([16])
|
73 |
+
input_ids max value: 29374
|
74 |
+
Vocab size: 29376
|
75 |
+
Batch 500:
|
76 |
+
input_ids shape: torch.Size([16, 256])
|
77 |
+
attention_mask shape: torch.Size([16, 256])
|
78 |
+
labels shape: torch.Size([16])
|
79 |
+
input_ids max value: 29374
|
80 |
+
Vocab size: 29376
|
81 |
+
Batch 600:
|
82 |
+
input_ids shape: torch.Size([16, 256])
|
83 |
+
attention_mask shape: torch.Size([16, 256])
|
84 |
+
labels shape: torch.Size([16])
|
85 |
+
input_ids max value: 29374
|
86 |
+
Vocab size: 29376
|
87 |
+
Batch 700:
|
88 |
+
input_ids shape: torch.Size([16, 256])
|
89 |
+
attention_mask shape: torch.Size([16, 256])
|
90 |
+
labels shape: torch.Size([16])
|
91 |
+
input_ids max value: 29374
|
92 |
+
Vocab size: 29376
|
93 |
+
Batch 800:
|
94 |
+
input_ids shape: torch.Size([16, 256])
|
95 |
+
attention_mask shape: torch.Size([16, 256])
|
96 |
+
labels shape: torch.Size([16])
|
97 |
+
input_ids max value: 29374
|
98 |
+
Vocab size: 29376
|
99 |
+
Batch 900:
|
100 |
+
input_ids shape: torch.Size([16, 256])
|
101 |
+
attention_mask shape: torch.Size([16, 256])
|
102 |
+
labels shape: torch.Size([16])
|
103 |
+
input_ids max value: 29374
|
104 |
+
Vocab size: 29376
|
105 |
+
Epoch 1/5:
|
106 |
+
Train Loss: 0.8540, Train Accuracy: 0.7226
|
107 |
+
Val Loss: 0.6542, Val Accuracy: 0.7833, Val F1: 0.7250
|
108 |
+
Batch 0:
|
109 |
+
input_ids shape: torch.Size([16, 256])
|
110 |
+
attention_mask shape: torch.Size([16, 256])
|
111 |
+
labels shape: torch.Size([16])
|
112 |
+
input_ids max value: 29374
|
113 |
+
Vocab size: 29376
|
114 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
115 |
+
with amp.autocast():
|
116 |
+
Batch 100:
|
117 |
+
input_ids shape: torch.Size([16, 256])
|
118 |
+
attention_mask shape: torch.Size([16, 256])
|
119 |
+
labels shape: torch.Size([16])
|
120 |
+
input_ids max value: 29374
|
121 |
+
Vocab size: 29376
|
122 |
+
Batch 200:
|
123 |
+
input_ids shape: torch.Size([16, 256])
|
124 |
+
attention_mask shape: torch.Size([16, 256])
|
125 |
+
labels shape: torch.Size([16])
|
126 |
+
input_ids max value: 29374
|
127 |
+
Vocab size: 29376
|
128 |
+
Batch 300:
|
129 |
+
input_ids shape: torch.Size([16, 256])
|
130 |
+
attention_mask shape: torch.Size([16, 256])
|
131 |
+
labels shape: torch.Size([16])
|
132 |
+
input_ids max value: 29374
|
133 |
+
Vocab size: 29376
|
134 |
+
Batch 400:
|
135 |
+
input_ids shape: torch.Size([16, 256])
|
136 |
+
attention_mask shape: torch.Size([16, 256])
|
137 |
+
labels shape: torch.Size([16])
|
138 |
+
input_ids max value: 29374
|
139 |
+
Vocab size: 29376
|
140 |
+
Batch 500:
|
141 |
+
input_ids shape: torch.Size([16, 256])
|
142 |
+
attention_mask shape: torch.Size([16, 256])
|
143 |
+
labels shape: torch.Size([16])
|
144 |
+
input_ids max value: 29374
|
145 |
+
Vocab size: 29376
|
146 |
+
Batch 600:
|
147 |
+
input_ids shape: torch.Size([16, 256])
|
148 |
+
attention_mask shape: torch.Size([16, 256])
|
149 |
+
labels shape: torch.Size([16])
|
150 |
+
input_ids max value: 29374
|
151 |
+
Vocab size: 29376
|
152 |
+
Batch 700:
|
153 |
+
input_ids shape: torch.Size([16, 256])
|
154 |
+
attention_mask shape: torch.Size([16, 256])
|
155 |
+
labels shape: torch.Size([16])
|
156 |
+
input_ids max value: 29374
|
157 |
+
Vocab size: 29376
|
158 |
+
Batch 800:
|
159 |
+
input_ids shape: torch.Size([16, 256])
|
160 |
+
attention_mask shape: torch.Size([16, 256])
|
161 |
+
labels shape: torch.Size([16])
|
162 |
+
input_ids max value: 29374
|
163 |
+
Vocab size: 29376
|
164 |
+
Batch 900:
|
165 |
+
input_ids shape: torch.Size([16, 256])
|
166 |
+
attention_mask shape: torch.Size([16, 256])
|
167 |
+
labels shape: torch.Size([16])
|
168 |
+
input_ids max value: 29374
|
169 |
+
Vocab size: 29376
|
170 |
+
Epoch 2/5:
|
171 |
+
Train Loss: 0.6120, Train Accuracy: 0.8040
|
172 |
+
Val Loss: 0.6541, Val Accuracy: 0.7765, Val F1: 0.7610
|
173 |
+
Batch 0:
|
174 |
+
input_ids shape: torch.Size([16, 256])
|
175 |
+
attention_mask shape: torch.Size([16, 256])
|
176 |
+
labels shape: torch.Size([16])
|
177 |
+
input_ids max value: 29374
|
178 |
+
Vocab size: 29376
|
179 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
180 |
+
with amp.autocast():
|
181 |
+
Batch 100:
|
182 |
+
input_ids shape: torch.Size([16, 256])
|
183 |
+
attention_mask shape: torch.Size([16, 256])
|
184 |
+
labels shape: torch.Size([16])
|
185 |
+
input_ids max value: 29374
|
186 |
+
Vocab size: 29376
|
187 |
+
Batch 200:
|
188 |
+
input_ids shape: torch.Size([16, 256])
|
189 |
+
attention_mask shape: torch.Size([16, 256])
|
190 |
+
labels shape: torch.Size([16])
|
191 |
+
input_ids max value: 29374
|
192 |
+
Vocab size: 29376
|
193 |
+
Batch 300:
|
194 |
+
input_ids shape: torch.Size([16, 256])
|
195 |
+
attention_mask shape: torch.Size([16, 256])
|
196 |
+
labels shape: torch.Size([16])
|
197 |
+
input_ids max value: 29374
|
198 |
+
Vocab size: 29376
|
199 |
+
Batch 400:
|
200 |
+
input_ids shape: torch.Size([16, 256])
|
201 |
+
attention_mask shape: torch.Size([16, 256])
|
202 |
+
labels shape: torch.Size([16])
|
203 |
+
input_ids max value: 29374
|
204 |
+
Vocab size: 29376
|
205 |
+
Batch 500:
|
206 |
+
input_ids shape: torch.Size([16, 256])
|
207 |
+
attention_mask shape: torch.Size([16, 256])
|
208 |
+
labels shape: torch.Size([16])
|
209 |
+
input_ids max value: 29374
|
210 |
+
Vocab size: 29376
|
211 |
+
Batch 600:
|
212 |
+
input_ids shape: torch.Size([16, 256])
|
213 |
+
attention_mask shape: torch.Size([16, 256])
|
214 |
+
labels shape: torch.Size([16])
|
215 |
+
input_ids max value: 29374
|
216 |
+
Vocab size: 29376
|
217 |
+
Batch 700:
|
218 |
+
input_ids shape: torch.Size([16, 256])
|
219 |
+
attention_mask shape: torch.Size([16, 256])
|
220 |
+
labels shape: torch.Size([16])
|
221 |
+
input_ids max value: 29374
|
222 |
+
Vocab size: 29376
|
223 |
+
Batch 800:
|
224 |
+
input_ids shape: torch.Size([16, 256])
|
225 |
+
attention_mask shape: torch.Size([16, 256])
|
226 |
+
labels shape: torch.Size([16])
|
227 |
+
input_ids max value: 29374
|
228 |
+
Vocab size: 29376
|
229 |
+
Batch 900:
|
230 |
+
input_ids shape: torch.Size([16, 256])
|
231 |
+
attention_mask shape: torch.Size([16, 256])
|
232 |
+
labels shape: torch.Size([16])
|
233 |
+
input_ids max value: 29374
|
234 |
+
Vocab size: 29376
|
235 |
+
Epoch 3/5:
|
236 |
+
Train Loss: 0.5221, Train Accuracy: 0.8347
|
237 |
+
Val Loss: 0.6959, Val Accuracy: 0.7582, Val F1: 0.7540
|
238 |
+
Batch 0:
|
239 |
+
input_ids shape: torch.Size([16, 256])
|
240 |
+
attention_mask shape: torch.Size([16, 256])
|
241 |
+
labels shape: torch.Size([16])
|
242 |
+
input_ids max value: 29374
|
243 |
+
Vocab size: 29376
|
244 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
245 |
+
with amp.autocast():
|
246 |
+
Batch 100:
|
247 |
+
input_ids shape: torch.Size([16, 256])
|
248 |
+
attention_mask shape: torch.Size([16, 256])
|
249 |
+
labels shape: torch.Size([16])
|
250 |
+
input_ids max value: 29374
|
251 |
+
Vocab size: 29376
|
252 |
+
Batch 200:
|
253 |
+
input_ids shape: torch.Size([16, 256])
|
254 |
+
attention_mask shape: torch.Size([16, 256])
|
255 |
+
labels shape: torch.Size([16])
|
256 |
+
input_ids max value: 29374
|
257 |
+
Vocab size: 29376
|
258 |
+
Batch 300:
|
259 |
+
input_ids shape: torch.Size([16, 256])
|
260 |
+
attention_mask shape: torch.Size([16, 256])
|
261 |
+
labels shape: torch.Size([16])
|
262 |
+
input_ids max value: 29374
|
263 |
+
Vocab size: 29376
|
264 |
+
Batch 400:
|
265 |
+
input_ids shape: torch.Size([16, 256])
|
266 |
+
attention_mask shape: torch.Size([16, 256])
|
267 |
+
labels shape: torch.Size([16])
|
268 |
+
input_ids max value: 29374
|
269 |
+
Vocab size: 29376
|
270 |
+
Batch 500:
|
271 |
+
input_ids shape: torch.Size([16, 256])
|
272 |
+
attention_mask shape: torch.Size([16, 256])
|
273 |
+
labels shape: torch.Size([16])
|
274 |
+
input_ids max value: 29374
|
275 |
+
Vocab size: 29376
|
276 |
+
Batch 600:
|
277 |
+
input_ids shape: torch.Size([16, 256])
|
278 |
+
attention_mask shape: torch.Size([16, 256])
|
279 |
+
labels shape: torch.Size([16])
|
280 |
+
input_ids max value: 29374
|
281 |
+
Vocab size: 29376
|
282 |
+
Batch 700:
|
283 |
+
input_ids shape: torch.Size([16, 256])
|
284 |
+
attention_mask shape: torch.Size([16, 256])
|
285 |
+
labels shape: torch.Size([16])
|
286 |
+
input_ids max value: 29374
|
287 |
+
Vocab size: 29376
|
288 |
+
Batch 800:
|
289 |
+
input_ids shape: torch.Size([16, 256])
|
290 |
+
attention_mask shape: torch.Size([16, 256])
|
291 |
+
labels shape: torch.Size([16])
|
292 |
+
input_ids max value: 29374
|
293 |
+
Vocab size: 29376
|
294 |
+
Batch 900:
|
295 |
+
input_ids shape: torch.Size([16, 256])
|
296 |
+
attention_mask shape: torch.Size([16, 256])
|
297 |
+
labels shape: torch.Size([16])
|
298 |
+
input_ids max value: 29374
|
299 |
+
Vocab size: 29376
|
300 |
+
Epoch 4/5:
|
301 |
+
Train Loss: 0.4214, Train Accuracy: 0.8676
|
302 |
+
Val Loss: 0.5618, Val Accuracy: 0.8204, Val F1: 0.7935
|
303 |
+
Batch 0:
|
304 |
+
input_ids shape: torch.Size([16, 256])
|
305 |
+
attention_mask shape: torch.Size([16, 256])
|
306 |
+
labels shape: torch.Size([16])
|
307 |
+
input_ids max value: 29374
|
308 |
+
Vocab size: 29376
|
309 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
310 |
+
with amp.autocast():
|
311 |
+
Batch 100:
|
312 |
+
input_ids shape: torch.Size([16, 256])
|
313 |
+
attention_mask shape: torch.Size([16, 256])
|
314 |
+
labels shape: torch.Size([16])
|
315 |
+
input_ids max value: 29374
|
316 |
+
Vocab size: 29376
|
317 |
+
Batch 200:
|
318 |
+
input_ids shape: torch.Size([16, 256])
|
319 |
+
attention_mask shape: torch.Size([16, 256])
|
320 |
+
labels shape: torch.Size([16])
|
321 |
+
input_ids max value: 29374
|
322 |
+
Vocab size: 29376
|
323 |
+
Batch 300:
|
324 |
+
input_ids shape: torch.Size([16, 256])
|
325 |
+
attention_mask shape: torch.Size([16, 256])
|
326 |
+
labels shape: torch.Size([16])
|
327 |
+
input_ids max value: 29374
|
328 |
+
Vocab size: 29376
|
329 |
+
Batch 400:
|
330 |
+
input_ids shape: torch.Size([16, 256])
|
331 |
+
attention_mask shape: torch.Size([16, 256])
|
332 |
+
labels shape: torch.Size([16])
|
333 |
+
input_ids max value: 29374
|
334 |
+
Vocab size: 29376
|
335 |
+
Batch 500:
|
336 |
+
input_ids shape: torch.Size([16, 256])
|
337 |
+
attention_mask shape: torch.Size([16, 256])
|
338 |
+
labels shape: torch.Size([16])
|
339 |
+
input_ids max value: 29374
|
340 |
+
Vocab size: 29376
|
341 |
+
Batch 600:
|
342 |
+
input_ids shape: torch.Size([16, 256])
|
343 |
+
attention_mask shape: torch.Size([16, 256])
|
344 |
+
labels shape: torch.Size([16])
|
345 |
+
input_ids max value: 29374
|
346 |
+
Vocab size: 29376
|
347 |
+
Batch 700:
|
348 |
+
input_ids shape: torch.Size([16, 256])
|
349 |
+
attention_mask shape: torch.Size([16, 256])
|
350 |
+
labels shape: torch.Size([16])
|
351 |
+
input_ids max value: 29374
|
352 |
+
Vocab size: 29376
|
353 |
+
Batch 800:
|
354 |
+
input_ids shape: torch.Size([16, 256])
|
355 |
+
attention_mask shape: torch.Size([16, 256])
|
356 |
+
labels shape: torch.Size([16])
|
357 |
+
input_ids max value: 29374
|
358 |
+
Vocab size: 29376
|
359 |
+
Batch 900:
|
360 |
+
input_ids shape: torch.Size([16, 256])
|
361 |
+
attention_mask shape: torch.Size([16, 256])
|
362 |
+
labels shape: torch.Size([16])
|
363 |
+
input_ids max value: 29374
|
364 |
+
Vocab size: 29376
|
365 |
+
Epoch 5/5:
|
366 |
+
Train Loss: 0.3263, Train Accuracy: 0.8953
|
367 |
+
Val Loss: 0.5990, Val Accuracy: 0.8125, Val F1: 0.8073
|
368 |
+
|
369 |
+
Test Results for All Cluster tokenizer:
|
370 |
+
Accuracy: 0.8125
|
371 |
+
F1 Score: 0.8071
|
372 |
+
AUC-ROC: 0.8733
|
373 |
+
|
374 |
+
Training with Final tokenizer:
|
375 |
+
Vocabulary size: 27998
|
376 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
377 |
+
Initialized model with vocabulary size: 27998
|
378 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
379 |
+
scaler = amp.GradScaler()
|
380 |
+
Batch 0:
|
381 |
+
input_ids shape: torch.Size([16, 256])
|
382 |
+
attention_mask shape: torch.Size([16, 256])
|
383 |
+
labels shape: torch.Size([16])
|
384 |
+
input_ids max value: 27997
|
385 |
+
Vocab size: 27998
|
386 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
387 |
+
with amp.autocast():
|
388 |
+
Batch 100:
|
389 |
+
input_ids shape: torch.Size([16, 256])
|
390 |
+
attention_mask shape: torch.Size([16, 256])
|
391 |
+
labels shape: torch.Size([16])
|
392 |
+
input_ids max value: 27997
|
393 |
+
Vocab size: 27998
|
394 |
+
Batch 200:
|
395 |
+
input_ids shape: torch.Size([16, 256])
|
396 |
+
attention_mask shape: torch.Size([16, 256])
|
397 |
+
labels shape: torch.Size([16])
|
398 |
+
input_ids max value: 27997
|
399 |
+
Vocab size: 27998
|
400 |
+
Batch 300:
|
401 |
+
input_ids shape: torch.Size([16, 256])
|
402 |
+
attention_mask shape: torch.Size([16, 256])
|
403 |
+
labels shape: torch.Size([16])
|
404 |
+
input_ids max value: 27997
|
405 |
+
Vocab size: 27998
|
406 |
+
Batch 400:
|
407 |
+
input_ids shape: torch.Size([16, 256])
|
408 |
+
attention_mask shape: torch.Size([16, 256])
|
409 |
+
labels shape: torch.Size([16])
|
410 |
+
input_ids max value: 27997
|
411 |
+
Vocab size: 27998
|
412 |
+
Batch 500:
|
413 |
+
input_ids shape: torch.Size([16, 256])
|
414 |
+
attention_mask shape: torch.Size([16, 256])
|
415 |
+
labels shape: torch.Size([16])
|
416 |
+
input_ids max value: 27997
|
417 |
+
Vocab size: 27998
|
418 |
+
Batch 600:
|
419 |
+
input_ids shape: torch.Size([16, 256])
|
420 |
+
attention_mask shape: torch.Size([16, 256])
|
421 |
+
labels shape: torch.Size([16])
|
422 |
+
input_ids max value: 27997
|
423 |
+
Vocab size: 27998
|
424 |
+
Batch 700:
|
425 |
+
input_ids shape: torch.Size([16, 256])
|
426 |
+
attention_mask shape: torch.Size([16, 256])
|
427 |
+
labels shape: torch.Size([16])
|
428 |
+
input_ids max value: 27997
|
429 |
+
Vocab size: 27998
|
430 |
+
Batch 800:
|
431 |
+
input_ids shape: torch.Size([16, 256])
|
432 |
+
attention_mask shape: torch.Size([16, 256])
|
433 |
+
labels shape: torch.Size([16])
|
434 |
+
input_ids max value: 27997
|
435 |
+
Vocab size: 27998
|
436 |
+
Batch 900:
|
437 |
+
input_ids shape: torch.Size([16, 256])
|
438 |
+
attention_mask shape: torch.Size([16, 256])
|
439 |
+
labels shape: torch.Size([16])
|
440 |
+
input_ids max value: 27997
|
441 |
+
Vocab size: 27998
|
442 |
+
Epoch 1/5:
|
443 |
+
Train Loss: 0.8917, Train Accuracy: 0.7102
|
444 |
+
Val Loss: 0.7550, Val Accuracy: 0.7533, Val F1: 0.7130
|
445 |
+
Batch 0:
|
446 |
+
input_ids shape: torch.Size([16, 256])
|
447 |
+
attention_mask shape: torch.Size([16, 256])
|
448 |
+
labels shape: torch.Size([16])
|
449 |
+
input_ids max value: 27997
|
450 |
+
Vocab size: 27998
|
451 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
452 |
+
with amp.autocast():
|
453 |
+
Batch 100:
|
454 |
+
input_ids shape: torch.Size([16, 256])
|
455 |
+
attention_mask shape: torch.Size([16, 256])
|
456 |
+
labels shape: torch.Size([16])
|
457 |
+
input_ids max value: 27997
|
458 |
+
Vocab size: 27998
|
459 |
+
Batch 200:
|
460 |
+
input_ids shape: torch.Size([16, 256])
|
461 |
+
attention_mask shape: torch.Size([16, 256])
|
462 |
+
labels shape: torch.Size([16])
|
463 |
+
input_ids max value: 27997
|
464 |
+
Vocab size: 27998
|
465 |
+
Batch 300:
|
466 |
+
input_ids shape: torch.Size([16, 256])
|
467 |
+
attention_mask shape: torch.Size([16, 256])
|
468 |
+
labels shape: torch.Size([16])
|
469 |
+
input_ids max value: 27997
|
470 |
+
Vocab size: 27998
|
471 |
+
Batch 400:
|
472 |
+
input_ids shape: torch.Size([16, 256])
|
473 |
+
attention_mask shape: torch.Size([16, 256])
|
474 |
+
labels shape: torch.Size([16])
|
475 |
+
input_ids max value: 27997
|
476 |
+
Vocab size: 27998
|
477 |
+
Batch 500:
|
478 |
+
input_ids shape: torch.Size([16, 256])
|
479 |
+
attention_mask shape: torch.Size([16, 256])
|
480 |
+
labels shape: torch.Size([16])
|
481 |
+
input_ids max value: 27997
|
482 |
+
Vocab size: 27998
|
483 |
+
Batch 600:
|
484 |
+
input_ids shape: torch.Size([16, 256])
|
485 |
+
attention_mask shape: torch.Size([16, 256])
|
486 |
+
labels shape: torch.Size([16])
|
487 |
+
input_ids max value: 27997
|
488 |
+
Vocab size: 27998
|
489 |
+
Batch 700:
|
490 |
+
input_ids shape: torch.Size([16, 256])
|
491 |
+
attention_mask shape: torch.Size([16, 256])
|
492 |
+
labels shape: torch.Size([16])
|
493 |
+
input_ids max value: 27997
|
494 |
+
Vocab size: 27998
|
495 |
+
Batch 800:
|
496 |
+
input_ids shape: torch.Size([16, 256])
|
497 |
+
attention_mask shape: torch.Size([16, 256])
|
498 |
+
labels shape: torch.Size([16])
|
499 |
+
input_ids max value: 27997
|
500 |
+
Vocab size: 27998
|
501 |
+
Batch 900:
|
502 |
+
input_ids shape: torch.Size([16, 256])
|
503 |
+
attention_mask shape: torch.Size([16, 256])
|
504 |
+
labels shape: torch.Size([16])
|
505 |
+
input_ids max value: 27997
|
506 |
+
Vocab size: 27998
|
507 |
+
Epoch 2/5:
|
508 |
+
Train Loss: 0.6483, Train Accuracy: 0.7855
|
509 |
+
Val Loss: 0.6702, Val Accuracy: 0.7822, Val F1: 0.7506
|
510 |
+
Batch 0:
|
511 |
+
input_ids shape: torch.Size([16, 256])
|
512 |
+
attention_mask shape: torch.Size([16, 256])
|
513 |
+
labels shape: torch.Size([16])
|
514 |
+
input_ids max value: 27997
|
515 |
+
Vocab size: 27998
|
516 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
517 |
+
with amp.autocast():
|
518 |
+
Batch 100:
|
519 |
+
input_ids shape: torch.Size([16, 256])
|
520 |
+
attention_mask shape: torch.Size([16, 256])
|
521 |
+
labels shape: torch.Size([16])
|
522 |
+
input_ids max value: 27997
|
523 |
+
Vocab size: 27998
|
524 |
+
Batch 200:
|
525 |
+
input_ids shape: torch.Size([16, 256])
|
526 |
+
attention_mask shape: torch.Size([16, 256])
|
527 |
+
labels shape: torch.Size([16])
|
528 |
+
input_ids max value: 27997
|
529 |
+
Vocab size: 27998
|
530 |
+
Batch 300:
|
531 |
+
input_ids shape: torch.Size([16, 256])
|
532 |
+
attention_mask shape: torch.Size([16, 256])
|
533 |
+
labels shape: torch.Size([16])
|
534 |
+
input_ids max value: 27997
|
535 |
+
Vocab size: 27998
|
536 |
+
Batch 400:
|
537 |
+
input_ids shape: torch.Size([16, 256])
|
538 |
+
attention_mask shape: torch.Size([16, 256])
|
539 |
+
labels shape: torch.Size([16])
|
540 |
+
input_ids max value: 27997
|
541 |
+
Vocab size: 27998
|
542 |
+
Batch 500:
|
543 |
+
input_ids shape: torch.Size([16, 256])
|
544 |
+
attention_mask shape: torch.Size([16, 256])
|
545 |
+
labels shape: torch.Size([16])
|
546 |
+
input_ids max value: 27997
|
547 |
+
Vocab size: 27998
|
548 |
+
Batch 600:
|
549 |
+
input_ids shape: torch.Size([16, 256])
|
550 |
+
attention_mask shape: torch.Size([16, 256])
|
551 |
+
labels shape: torch.Size([16])
|
552 |
+
input_ids max value: 27997
|
553 |
+
Vocab size: 27998
|
554 |
+
Batch 700:
|
555 |
+
input_ids shape: torch.Size([16, 256])
|
556 |
+
attention_mask shape: torch.Size([16, 256])
|
557 |
+
labels shape: torch.Size([16])
|
558 |
+
input_ids max value: 27997
|
559 |
+
Vocab size: 27998
|
560 |
+
Batch 800:
|
561 |
+
input_ids shape: torch.Size([16, 256])
|
562 |
+
attention_mask shape: torch.Size([16, 256])
|
563 |
+
labels shape: torch.Size([16])
|
564 |
+
input_ids max value: 27997
|
565 |
+
Vocab size: 27998
|
566 |
+
Batch 900:
|
567 |
+
input_ids shape: torch.Size([16, 256])
|
568 |
+
attention_mask shape: torch.Size([16, 256])
|
569 |
+
labels shape: torch.Size([16])
|
570 |
+
input_ids max value: 27997
|
571 |
+
Vocab size: 27998
|
572 |
+
Epoch 3/5:
|
573 |
+
Train Loss: 0.5660, Train Accuracy: 0.8135
|
574 |
+
Val Loss: 0.6397, Val Accuracy: 0.7983, Val F1: 0.7548
|
575 |
+
Batch 0:
|
576 |
+
input_ids shape: torch.Size([16, 256])
|
577 |
+
attention_mask shape: torch.Size([16, 256])
|
578 |
+
labels shape: torch.Size([16])
|
579 |
+
input_ids max value: 27997
|
580 |
+
Vocab size: 27998
|
581 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
582 |
+
with amp.autocast():
|
583 |
+
Batch 100:
|
584 |
+
input_ids shape: torch.Size([16, 256])
|
585 |
+
attention_mask shape: torch.Size([16, 256])
|
586 |
+
labels shape: torch.Size([16])
|
587 |
+
input_ids max value: 27997
|
588 |
+
Vocab size: 27998
|
589 |
+
Batch 200:
|
590 |
+
input_ids shape: torch.Size([16, 256])
|
591 |
+
attention_mask shape: torch.Size([16, 256])
|
592 |
+
labels shape: torch.Size([16])
|
593 |
+
input_ids max value: 27997
|
594 |
+
Vocab size: 27998
|
595 |
+
Batch 300:
|
596 |
+
input_ids shape: torch.Size([16, 256])
|
597 |
+
attention_mask shape: torch.Size([16, 256])
|
598 |
+
labels shape: torch.Size([16])
|
599 |
+
input_ids max value: 27997
|
600 |
+
Vocab size: 27998
|
601 |
+
Batch 400:
|
602 |
+
input_ids shape: torch.Size([16, 256])
|
603 |
+
attention_mask shape: torch.Size([16, 256])
|
604 |
+
labels shape: torch.Size([16])
|
605 |
+
input_ids max value: 27997
|
606 |
+
Vocab size: 27998
|
607 |
+
Batch 500:
|
608 |
+
input_ids shape: torch.Size([16, 256])
|
609 |
+
attention_mask shape: torch.Size([16, 256])
|
610 |
+
labels shape: torch.Size([16])
|
611 |
+
input_ids max value: 27997
|
612 |
+
Vocab size: 27998
|
613 |
+
Batch 600:
|
614 |
+
input_ids shape: torch.Size([16, 256])
|
615 |
+
attention_mask shape: torch.Size([16, 256])
|
616 |
+
labels shape: torch.Size([16])
|
617 |
+
input_ids max value: 27997
|
618 |
+
Vocab size: 27998
|
619 |
+
Batch 700:
|
620 |
+
input_ids shape: torch.Size([16, 256])
|
621 |
+
attention_mask shape: torch.Size([16, 256])
|
622 |
+
labels shape: torch.Size([16])
|
623 |
+
input_ids max value: 27997
|
624 |
+
Vocab size: 27998
|
625 |
+
Batch 800:
|
626 |
+
input_ids shape: torch.Size([16, 256])
|
627 |
+
attention_mask shape: torch.Size([16, 256])
|
628 |
+
labels shape: torch.Size([16])
|
629 |
+
input_ids max value: 27997
|
630 |
+
Vocab size: 27998
|
631 |
+
Batch 900:
|
632 |
+
input_ids shape: torch.Size([16, 256])
|
633 |
+
attention_mask shape: torch.Size([16, 256])
|
634 |
+
labels shape: torch.Size([16])
|
635 |
+
input_ids max value: 27997
|
636 |
+
Vocab size: 27998
|
637 |
+
Epoch 4/5:
|
638 |
+
Train Loss: 0.4725, Train Accuracy: 0.8545
|
639 |
+
Val Loss: 0.7259, Val Accuracy: 0.7707, Val F1: 0.7672
|
640 |
+
Batch 0:
|
641 |
+
input_ids shape: torch.Size([16, 256])
|
642 |
+
attention_mask shape: torch.Size([16, 256])
|
643 |
+
labels shape: torch.Size([16])
|
644 |
+
input_ids max value: 27997
|
645 |
+
Vocab size: 27998
|
646 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
647 |
+
with amp.autocast():
|
648 |
+
Batch 100:
|
649 |
+
input_ids shape: torch.Size([16, 256])
|
650 |
+
attention_mask shape: torch.Size([16, 256])
|
651 |
+
labels shape: torch.Size([16])
|
652 |
+
input_ids max value: 27997
|
653 |
+
Vocab size: 27998
|
654 |
+
Batch 200:
|
655 |
+
input_ids shape: torch.Size([16, 256])
|
656 |
+
attention_mask shape: torch.Size([16, 256])
|
657 |
+
labels shape: torch.Size([16])
|
658 |
+
input_ids max value: 27997
|
659 |
+
Vocab size: 27998
|
660 |
+
Batch 300:
|
661 |
+
input_ids shape: torch.Size([16, 256])
|
662 |
+
attention_mask shape: torch.Size([16, 256])
|
663 |
+
labels shape: torch.Size([16])
|
664 |
+
input_ids max value: 27997
|
665 |
+
Vocab size: 27998
|
666 |
+
Batch 400:
|
667 |
+
input_ids shape: torch.Size([16, 256])
|
668 |
+
attention_mask shape: torch.Size([16, 256])
|
669 |
+
labels shape: torch.Size([16])
|
670 |
+
input_ids max value: 27997
|
671 |
+
Vocab size: 27998
|
672 |
+
Batch 500:
|
673 |
+
input_ids shape: torch.Size([16, 256])
|
674 |
+
attention_mask shape: torch.Size([16, 256])
|
675 |
+
labels shape: torch.Size([16])
|
676 |
+
input_ids max value: 27997
|
677 |
+
Vocab size: 27998
|
678 |
+
Batch 600:
|
679 |
+
input_ids shape: torch.Size([16, 256])
|
680 |
+
attention_mask shape: torch.Size([16, 256])
|
681 |
+
labels shape: torch.Size([16])
|
682 |
+
input_ids max value: 27997
|
683 |
+
Vocab size: 27998
|
684 |
+
Batch 700:
|
685 |
+
input_ids shape: torch.Size([16, 256])
|
686 |
+
attention_mask shape: torch.Size([16, 256])
|
687 |
+
labels shape: torch.Size([16])
|
688 |
+
input_ids max value: 27997
|
689 |
+
Vocab size: 27998
|
690 |
+
Batch 800:
|
691 |
+
input_ids shape: torch.Size([16, 256])
|
692 |
+
attention_mask shape: torch.Size([16, 256])
|
693 |
+
labels shape: torch.Size([16])
|
694 |
+
input_ids max value: 27997
|
695 |
+
Vocab size: 27998
|
696 |
+
Batch 900:
|
697 |
+
input_ids shape: torch.Size([16, 256])
|
698 |
+
attention_mask shape: torch.Size([16, 256])
|
699 |
+
labels shape: torch.Size([16])
|
700 |
+
input_ids max value: 27997
|
701 |
+
Vocab size: 27998
|
702 |
+
Epoch 5/5:
|
703 |
+
Train Loss: 0.3889, Train Accuracy: 0.8792
|
704 |
+
Val Loss: 0.5967, Val Accuracy: 0.8174, Val F1: 0.7926
|
705 |
+
|
706 |
+
Test Results for Final tokenizer:
|
707 |
+
Accuracy: 0.8174
|
708 |
+
F1 Score: 0.7925
|
709 |
+
AUC-ROC: 0.8663
|
710 |
+
|
711 |
+
Training with General tokenizer:
|
712 |
+
Vocabulary size: 30522
|
713 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
714 |
+
Initialized model with vocabulary size: 30522
|
715 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
716 |
+
scaler = amp.GradScaler()
|
717 |
+
Batch 0:
|
718 |
+
input_ids shape: torch.Size([16, 256])
|
719 |
+
attention_mask shape: torch.Size([16, 256])
|
720 |
+
labels shape: torch.Size([16])
|
721 |
+
input_ids max value: 29605
|
722 |
+
Vocab size: 30522
|
723 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
724 |
+
with amp.autocast():
|
725 |
+
Batch 100:
|
726 |
+
input_ids shape: torch.Size([16, 256])
|
727 |
+
attention_mask shape: torch.Size([16, 256])
|
728 |
+
labels shape: torch.Size([16])
|
729 |
+
input_ids max value: 29438
|
730 |
+
Vocab size: 30522
|
731 |
+
Batch 200:
|
732 |
+
input_ids shape: torch.Size([16, 256])
|
733 |
+
attention_mask shape: torch.Size([16, 256])
|
734 |
+
labels shape: torch.Size([16])
|
735 |
+
input_ids max value: 29300
|
736 |
+
Vocab size: 30522
|
737 |
+
Batch 300:
|
738 |
+
input_ids shape: torch.Size([16, 256])
|
739 |
+
attention_mask shape: torch.Size([16, 256])
|
740 |
+
labels shape: torch.Size([16])
|
741 |
+
input_ids max value: 29464
|
742 |
+
Vocab size: 30522
|
743 |
+
Batch 400:
|
744 |
+
input_ids shape: torch.Size([16, 256])
|
745 |
+
attention_mask shape: torch.Size([16, 256])
|
746 |
+
labels shape: torch.Size([16])
|
747 |
+
input_ids max value: 29494
|
748 |
+
Vocab size: 30522
|
749 |
+
Batch 500:
|
750 |
+
input_ids shape: torch.Size([16, 256])
|
751 |
+
attention_mask shape: torch.Size([16, 256])
|
752 |
+
labels shape: torch.Size([16])
|
753 |
+
input_ids max value: 29464
|
754 |
+
Vocab size: 30522
|
755 |
+
Batch 600:
|
756 |
+
input_ids shape: torch.Size([16, 256])
|
757 |
+
attention_mask shape: torch.Size([16, 256])
|
758 |
+
labels shape: torch.Size([16])
|
759 |
+
input_ids max value: 29464
|
760 |
+
Vocab size: 30522
|
761 |
+
Batch 700:
|
762 |
+
input_ids shape: torch.Size([16, 256])
|
763 |
+
attention_mask shape: torch.Size([16, 256])
|
764 |
+
labels shape: torch.Size([16])
|
765 |
+
input_ids max value: 29464
|
766 |
+
Vocab size: 30522
|
767 |
+
Batch 800:
|
768 |
+
input_ids shape: torch.Size([16, 256])
|
769 |
+
attention_mask shape: torch.Size([16, 256])
|
770 |
+
labels shape: torch.Size([16])
|
771 |
+
input_ids max value: 29340
|
772 |
+
Vocab size: 30522
|
773 |
+
Batch 900:
|
774 |
+
input_ids shape: torch.Size([16, 256])
|
775 |
+
attention_mask shape: torch.Size([16, 256])
|
776 |
+
labels shape: torch.Size([16])
|
777 |
+
input_ids max value: 29454
|
778 |
+
Vocab size: 30522
|
779 |
+
Epoch 1/5:
|
780 |
+
Train Loss: 0.8557, Train Accuracy: 0.7257
|
781 |
+
Val Loss: 0.6864, Val Accuracy: 0.7724, Val F1: 0.7309
|
782 |
+
Batch 0:
|
783 |
+
input_ids shape: torch.Size([16, 256])
|
784 |
+
attention_mask shape: torch.Size([16, 256])
|
785 |
+
labels shape: torch.Size([16])
|
786 |
+
input_ids max value: 29300
|
787 |
+
Vocab size: 30522
|
788 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
789 |
+
with amp.autocast():
|
790 |
+
Batch 100:
|
791 |
+
input_ids shape: torch.Size([16, 256])
|
792 |
+
attention_mask shape: torch.Size([16, 256])
|
793 |
+
labels shape: torch.Size([16])
|
794 |
+
input_ids max value: 29464
|
795 |
+
Vocab size: 30522
|
796 |
+
Batch 200:
|
797 |
+
input_ids shape: torch.Size([16, 256])
|
798 |
+
attention_mask shape: torch.Size([16, 256])
|
799 |
+
labels shape: torch.Size([16])
|
800 |
+
input_ids max value: 29494
|
801 |
+
Vocab size: 30522
|
802 |
+
Batch 300:
|
803 |
+
input_ids shape: torch.Size([16, 256])
|
804 |
+
attention_mask shape: torch.Size([16, 256])
|
805 |
+
labels shape: torch.Size([16])
|
806 |
+
input_ids max value: 29474
|
807 |
+
Vocab size: 30522
|
808 |
+
Batch 400:
|
809 |
+
input_ids shape: torch.Size([16, 256])
|
810 |
+
attention_mask shape: torch.Size([16, 256])
|
811 |
+
labels shape: torch.Size([16])
|
812 |
+
input_ids max value: 29535
|
813 |
+
Vocab size: 30522
|
814 |
+
Batch 500:
|
815 |
+
input_ids shape: torch.Size([16, 256])
|
816 |
+
attention_mask shape: torch.Size([16, 256])
|
817 |
+
labels shape: torch.Size([16])
|
818 |
+
input_ids max value: 29577
|
819 |
+
Vocab size: 30522
|
820 |
+
Batch 600:
|
821 |
+
input_ids shape: torch.Size([16, 256])
|
822 |
+
attention_mask shape: torch.Size([16, 256])
|
823 |
+
labels shape: torch.Size([16])
|
824 |
+
input_ids max value: 29598
|
825 |
+
Vocab size: 30522
|
826 |
+
Batch 700:
|
827 |
+
input_ids shape: torch.Size([16, 256])
|
828 |
+
attention_mask shape: torch.Size([16, 256])
|
829 |
+
labels shape: torch.Size([16])
|
830 |
+
input_ids max value: 29605
|
831 |
+
Vocab size: 30522
|
832 |
+
Batch 800:
|
833 |
+
input_ids shape: torch.Size([16, 256])
|
834 |
+
attention_mask shape: torch.Size([16, 256])
|
835 |
+
labels shape: torch.Size([16])
|
836 |
+
input_ids max value: 29160
|
837 |
+
Vocab size: 30522
|
838 |
+
Batch 900:
|
839 |
+
input_ids shape: torch.Size([16, 256])
|
840 |
+
attention_mask shape: torch.Size([16, 256])
|
841 |
+
labels shape: torch.Size([16])
|
842 |
+
input_ids max value: 29532
|
843 |
+
Vocab size: 30522
|
844 |
+
Epoch 2/5:
|
845 |
+
Train Loss: 0.5995, Train Accuracy: 0.8029
|
846 |
+
Val Loss: 0.6449, Val Accuracy: 0.7882, Val F1: 0.7366
|
847 |
+
Batch 0:
|
848 |
+
input_ids shape: torch.Size([16, 256])
|
849 |
+
attention_mask shape: torch.Size([16, 256])
|
850 |
+
labels shape: torch.Size([16])
|
851 |
+
input_ids max value: 29536
|
852 |
+
Vocab size: 30522
|
853 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
854 |
+
with amp.autocast():
|
855 |
+
Batch 100:
|
856 |
+
input_ids shape: torch.Size([16, 256])
|
857 |
+
attention_mask shape: torch.Size([16, 256])
|
858 |
+
labels shape: torch.Size([16])
|
859 |
+
input_ids max value: 29464
|
860 |
+
Vocab size: 30522
|
861 |
+
Batch 200:
|
862 |
+
input_ids shape: torch.Size([16, 256])
|
863 |
+
attention_mask shape: torch.Size([16, 256])
|
864 |
+
labels shape: torch.Size([16])
|
865 |
+
input_ids max value: 29536
|
866 |
+
Vocab size: 30522
|
867 |
+
Batch 300:
|
868 |
+
input_ids shape: torch.Size([16, 256])
|
869 |
+
attention_mask shape: torch.Size([16, 256])
|
870 |
+
labels shape: torch.Size([16])
|
871 |
+
input_ids max value: 29464
|
872 |
+
Vocab size: 30522
|
873 |
+
Batch 400:
|
874 |
+
input_ids shape: torch.Size([16, 256])
|
875 |
+
attention_mask shape: torch.Size([16, 256])
|
876 |
+
labels shape: torch.Size([16])
|
877 |
+
input_ids max value: 29464
|
878 |
+
Vocab size: 30522
|
879 |
+
Batch 500:
|
880 |
+
input_ids shape: torch.Size([16, 256])
|
881 |
+
attention_mask shape: torch.Size([16, 256])
|
882 |
+
labels shape: torch.Size([16])
|
883 |
+
input_ids max value: 29464
|
884 |
+
Vocab size: 30522
|
885 |
+
Batch 600:
|
886 |
+
input_ids shape: torch.Size([16, 256])
|
887 |
+
attention_mask shape: torch.Size([16, 256])
|
888 |
+
labels shape: torch.Size([16])
|
889 |
+
input_ids max value: 29413
|
890 |
+
Vocab size: 30522
|
891 |
+
Batch 700:
|
892 |
+
input_ids shape: torch.Size([16, 256])
|
893 |
+
attention_mask shape: torch.Size([16, 256])
|
894 |
+
labels shape: torch.Size([16])
|
895 |
+
input_ids max value: 29346
|
896 |
+
Vocab size: 30522
|
897 |
+
Batch 800:
|
898 |
+
input_ids shape: torch.Size([16, 256])
|
899 |
+
attention_mask shape: torch.Size([16, 256])
|
900 |
+
labels shape: torch.Size([16])
|
901 |
+
input_ids max value: 29451
|
902 |
+
Vocab size: 30522
|
903 |
+
Batch 900:
|
904 |
+
input_ids shape: torch.Size([16, 256])
|
905 |
+
attention_mask shape: torch.Size([16, 256])
|
906 |
+
labels shape: torch.Size([16])
|
907 |
+
input_ids max value: 29280
|
908 |
+
Vocab size: 30522
|
909 |
+
Epoch 3/5:
|
910 |
+
Train Loss: 0.5332, Train Accuracy: 0.8291
|
911 |
+
Val Loss: 0.6577, Val Accuracy: 0.7942, Val F1: 0.7687
|
912 |
+
Batch 0:
|
913 |
+
input_ids shape: torch.Size([16, 256])
|
914 |
+
attention_mask shape: torch.Size([16, 256])
|
915 |
+
labels shape: torch.Size([16])
|
916 |
+
input_ids max value: 29464
|
917 |
+
Vocab size: 30522
|
918 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
919 |
+
with amp.autocast():
|
920 |
+
Batch 100:
|
921 |
+
input_ids shape: torch.Size([16, 256])
|
922 |
+
attention_mask shape: torch.Size([16, 256])
|
923 |
+
labels shape: torch.Size([16])
|
924 |
+
input_ids max value: 29464
|
925 |
+
Vocab size: 30522
|
926 |
+
Batch 200:
|
927 |
+
input_ids shape: torch.Size([16, 256])
|
928 |
+
attention_mask shape: torch.Size([16, 256])
|
929 |
+
labels shape: torch.Size([16])
|
930 |
+
input_ids max value: 29535
|
931 |
+
Vocab size: 30522
|
932 |
+
Batch 300:
|
933 |
+
input_ids shape: torch.Size([16, 256])
|
934 |
+
attention_mask shape: torch.Size([16, 256])
|
935 |
+
labels shape: torch.Size([16])
|
936 |
+
input_ids max value: 29413
|
937 |
+
Vocab size: 30522
|
938 |
+
Batch 400:
|
939 |
+
input_ids shape: torch.Size([16, 256])
|
940 |
+
attention_mask shape: torch.Size([16, 256])
|
941 |
+
labels shape: torch.Size([16])
|
942 |
+
input_ids max value: 29461
|
943 |
+
Vocab size: 30522
|
944 |
+
Batch 500:
|
945 |
+
input_ids shape: torch.Size([16, 256])
|
946 |
+
attention_mask shape: torch.Size([16, 256])
|
947 |
+
labels shape: torch.Size([16])
|
948 |
+
input_ids max value: 29536
|
949 |
+
Vocab size: 30522
|
950 |
+
Batch 600:
|
951 |
+
input_ids shape: torch.Size([16, 256])
|
952 |
+
attention_mask shape: torch.Size([16, 256])
|
953 |
+
labels shape: torch.Size([16])
|
954 |
+
input_ids max value: 29300
|
955 |
+
Vocab size: 30522
|
956 |
+
Batch 700:
|
957 |
+
input_ids shape: torch.Size([16, 256])
|
958 |
+
attention_mask shape: torch.Size([16, 256])
|
959 |
+
labels shape: torch.Size([16])
|
960 |
+
input_ids max value: 29536
|
961 |
+
Vocab size: 30522
|
962 |
+
Batch 800:
|
963 |
+
input_ids shape: torch.Size([16, 256])
|
964 |
+
attention_mask shape: torch.Size([16, 256])
|
965 |
+
labels shape: torch.Size([16])
|
966 |
+
input_ids max value: 29513
|
967 |
+
Vocab size: 30522
|
968 |
+
Batch 900:
|
969 |
+
input_ids shape: torch.Size([16, 256])
|
970 |
+
attention_mask shape: torch.Size([16, 256])
|
971 |
+
labels shape: torch.Size([16])
|
972 |
+
input_ids max value: 29536
|
973 |
+
Vocab size: 30522
|
974 |
+
Epoch 4/5:
|
975 |
+
Train Loss: 0.4665, Train Accuracy: 0.8555
|
976 |
+
Val Loss: 0.6495, Val Accuracy: 0.7931, Val F1: 0.7709
|
977 |
+
Batch 0:
|
978 |
+
input_ids shape: torch.Size([16, 256])
|
979 |
+
attention_mask shape: torch.Size([16, 256])
|
980 |
+
labels shape: torch.Size([16])
|
981 |
+
input_ids max value: 29454
|
982 |
+
Vocab size: 30522
|
983 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
984 |
+
with amp.autocast():
|
985 |
+
Batch 100:
|
986 |
+
input_ids shape: torch.Size([16, 256])
|
987 |
+
attention_mask shape: torch.Size([16, 256])
|
988 |
+
labels shape: torch.Size([16])
|
989 |
+
input_ids max value: 29598
|
990 |
+
Vocab size: 30522
|
991 |
+
Batch 200:
|
992 |
+
input_ids shape: torch.Size([16, 256])
|
993 |
+
attention_mask shape: torch.Size([16, 256])
|
994 |
+
labels shape: torch.Size([16])
|
995 |
+
input_ids max value: 29336
|
996 |
+
Vocab size: 30522
|
997 |
+
Batch 300:
|
998 |
+
input_ids shape: torch.Size([16, 256])
|
999 |
+
attention_mask shape: torch.Size([16, 256])
|
1000 |
+
labels shape: torch.Size([16])
|
1001 |
+
input_ids max value: 29602
|
1002 |
+
Vocab size: 30522
|
1003 |
+
Batch 400:
|
1004 |
+
input_ids shape: torch.Size([16, 256])
|
1005 |
+
attention_mask shape: torch.Size([16, 256])
|
1006 |
+
labels shape: torch.Size([16])
|
1007 |
+
input_ids max value: 29598
|
1008 |
+
Vocab size: 30522
|
1009 |
+
Batch 500:
|
1010 |
+
input_ids shape: torch.Size([16, 256])
|
1011 |
+
attention_mask shape: torch.Size([16, 256])
|
1012 |
+
labels shape: torch.Size([16])
|
1013 |
+
input_ids max value: 29464
|
1014 |
+
Vocab size: 30522
|
1015 |
+
Batch 600:
|
1016 |
+
input_ids shape: torch.Size([16, 256])
|
1017 |
+
attention_mask shape: torch.Size([16, 256])
|
1018 |
+
labels shape: torch.Size([16])
|
1019 |
+
input_ids max value: 29513
|
1020 |
+
Vocab size: 30522
|
1021 |
+
Batch 700:
|
1022 |
+
input_ids shape: torch.Size([16, 256])
|
1023 |
+
attention_mask shape: torch.Size([16, 256])
|
1024 |
+
labels shape: torch.Size([16])
|
1025 |
+
input_ids max value: 29464
|
1026 |
+
Vocab size: 30522
|
1027 |
+
Batch 800:
|
1028 |
+
input_ids shape: torch.Size([16, 256])
|
1029 |
+
attention_mask shape: torch.Size([16, 256])
|
1030 |
+
labels shape: torch.Size([16])
|
1031 |
+
input_ids max value: 29536
|
1032 |
+
Vocab size: 30522
|
1033 |
+
Batch 900:
|
1034 |
+
input_ids shape: torch.Size([16, 256])
|
1035 |
+
attention_mask shape: torch.Size([16, 256])
|
1036 |
+
labels shape: torch.Size([16])
|
1037 |
+
input_ids max value: 29535
|
1038 |
+
Vocab size: 30522
|
1039 |
+
Epoch 5/5:
|
1040 |
+
Train Loss: 0.3991, Train Accuracy: 0.8781
|
1041 |
+
Val Loss: 0.6572, Val Accuracy: 0.7948, Val F1: 0.7804
|
1042 |
+
|
1043 |
+
Test Results for General tokenizer:
|
1044 |
+
Accuracy: 0.7945
|
1045 |
+
F1 Score: 0.7802
|
1046 |
+
AUC-ROC: 0.8825
|
1047 |
+
|
1048 |
+
Summary of Results:
|
1049 |
+
|
1050 |
+
All Cluster Tokenizer:
|
1051 |
+
Accuracy: 0.8125
|
1052 |
+
F1 Score: 0.8071
|
1053 |
+
AUC-ROC: 0.8733
|
1054 |
+
|
1055 |
+
Final Tokenizer:
|
1056 |
+
Accuracy: 0.8174
|
1057 |
+
F1 Score: 0.7925
|
1058 |
+
AUC-ROC: 0.8663
|
1059 |
+
|
1060 |
+
General Tokenizer:
|
1061 |
+
Accuracy: 0.7945
|
1062 |
+
F1 Score: 0.7802
|
1063 |
+
AUC-ROC: 0.8825
|
1064 |
+
|
1065 |
+
Class distribution in training set:
|
1066 |
+
Class Biology: 439 samples
|
1067 |
+
Class Chemistry: 454 samples
|
1068 |
+
Class Computer Science: 1358 samples
|
1069 |
+
Class Mathematics: 9480 samples
|
1070 |
+
Class Physics: 2733 samples
|
1071 |
+
Class Statistics: 200 samples
|
General_tokenizer_plot.png
ADDED
Git LFS Details
|