Datasets:
File size: 8,498 Bytes
89922d6 43416eb 89922d6 4788cd2 89922d6 4788cd2 89922d6 4788cd2 89922d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
---
annotations_creators:
- expert-generated
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- ar
- de
- ja
- hi
- pt
- en
- es
- it
- fr
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: mintaka
pretty_name: Mintaka
language_bcp47:
- ar-SA
- de-DE
- ja-JP
- hi-HI
- pt-PT
- en-EN
- es-ES
- it-IT
- fr-FR
configs:
- config_name: en
data_files:
- split: train
path: en/train-*
- split: validation
path: en/validation-*
- split: test
path: en/test-*
default: true
dataset_info:
config_name: en
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
dtype: string
- name: answerText
dtype: string
- name: category
dtype: string
- name: complexityType
dtype: string
- name: questionEntity
list:
- name: name
dtype: string
- name: entityType
dtype: string
- name: label
dtype: string
- name: mention
dtype: string
- name: span
list: int32
- name: answerEntity
list:
- name: name
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 3713651
num_examples: 14000
- name: validation
num_bytes: 533751
num_examples: 2000
- name: test
num_bytes: 1057790
num_examples: 4000
download_size: 2147987
dataset_size: 5305192
---
# Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/amazon-science/mintaka
- **Repository:** https://github.com/amazon-science/mintaka
- **Paper:** https://aclanthology.org/2022.coling-1.138/
- **Point of Contact:** [GitHub](https://github.com/amazon-science/mintaka)
### Dataset Summary
Mintaka is a complex, natural, and multilingual question answering (QA) dataset composed of 20,000 question-answer pairs elicited from MTurk workers and annotated with Wikidata question and answer entities. Full details on the Mintaka dataset can be found in our paper: https://aclanthology.org/2022.coling-1.138/
To build Mintaka, we explicitly collected questions in 8 complexity types, as well as generic questions:
- Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
- Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
- Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
- Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
- Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
- Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
- Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
- Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
- Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
- We collected questions about 8 categories: Movies, Music, Sports, Books, Geography, Politics, Video Games, and History
Mintaka is one of the first large-scale complex, natural, and multilingual datasets that can be used for end-to-end question-answering models.
### Supported Tasks and Leaderboards
The dataset can be used to train a model for question answering.
To ensure comparability, please refer to our evaluation script here: https://github.com/amazon-science/mintaka#evaluation
### Languages
All questions were written in English and translated into 8 additional languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish.
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```json
{
"id": "a9011ddf",
"lang": "en",
"question": "What is the seventh tallest mountain in North America?",
"answerText": "Mount Lucania",
"category": "geography",
"complexityType": "ordinal",
"questionEntity":
[
{
"name": "Q49",
"entityType": "entity",
"label": "North America",
"mention": "North America",
"span": [40, 53]
},
{
"name": 7,
"entityType": "ordinal",
"mention": "seventh",
"span": [12, 19]
}
],
"answerEntity":
[
{
"name": "Q1153188",
"label": "Mount Lucania",
}
],
}
```
### Data Fields
The data fields are the same among all splits.
`id`: a unique ID for the given sample.
`lang`: the language of the question.
`question`: the original question elicited in the corresponding language.
`answerText`: the original answer text elicited in English.
`category`: the category of the question. Options are: geography, movies, history, books, politics, music, videogames, or sports
`complexityType`: the complexity type of the question. Options are: ordinal, intersection, count, superlative, yesno comparative, multihop, difference, or generic
`questionEntity`: a list of annotated question entities identified by crowd workers.
```
{
"name": The Wikidata Q-code or numerical value of the entity
"entityType": The type of the entity. Options are:
entity, cardinal, ordinal, date, time, percent, quantity, or money
"label": The label of the Wikidata Q-code
"mention": The entity as it appears in the English question text. Will be empty for non-English samples.
"span": The start and end characters of the mention in the English question text. Will be empty for non-English samples.
}
```
`answerEntity`: a list of annotated answer entities identified by crowd workers.
```
{
"name": The Wikidata Q-code or numerical value of the entity
"label": The label of the Wikidata Q-code
}
```
### Data Splits
For each language, we split into train (14,000 samples), dev (2,000 samples), and test (4,000 samples) sets.
### Personal and Sensitive Information
The corpora is free of personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
Amazon Alexa AI.
### Licensing Information
This project is licensed under the CC-BY-4.0 License.
### Citation Information
Please cite the following papers when using this dataset.
```latex
@inproceedings{sen-etal-2022-mintaka,
title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
author = "Sen, Priyanka and
Aji, Alham Fikri and
Saffari, Amir",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.138",
pages = "1604--1619"
}
```
### Contributions
Thanks to [@afaji](https://github.com/afaji) for adding this dataset. |