Nova / Nova.py
Ano-2090's picture
Update Nova.py
b999ac6 verified
import os
import pandas as pd
from datasets import GeneratorBasedBuilder, SplitGenerator, Split, Value, Features, Image, DatasetInfo, Sequence
class NovaDataset(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description="NOVA benchmark: anomaly localization and clinical reasoning in brain MRI.",
features=Features({
"image": Image(),
"filename": Value("string"),
"caption": Value("string"),
"case_id": Value("string"),
"scan_id": Value("string"),
"title": Value("string"),
"publication_date": Value("string"),
"clinical_history": Value("string"),
"differential_diagnosis": Value("string"),
"final_diagnosis": Value("string"),
"link": Value("string"),
"bbox_gold": Sequence({
"x": Value("float32"),
"y": Value("float32"),
"width": Value("float32"),
"height": Value("float32"),
}),
"bbox_raters": Sequence({
"rater": Value("string"),
"x": Value("float32"),
"y": Value("float32"),
"width": Value("float32"),
"height": Value("float32"),
}), }),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract("test/Images.zip")
image_files = list(dl_manager.iter_files(archive_path))
# Download CSVs
csvs = {
"captions": dl_manager.download("captions.csv"),
"bboxes_gold": dl_manager.download("bboxes_gold.csv"),
"bboxes_raters": dl_manager.download("bboxes_raters.csv"),
"case_metadata": dl_manager.download("case_metadata.csv"),
}
return [
SplitGenerator(
name=Split.TEST,
gen_kwargs={"image_files": image_files, "csvs": csvs},
)
]
def _generate_examples(self, image_files, csvs):
captions = pd.read_csv(csvs["captions"])
gold = pd.read_csv(csvs["bboxes_gold"])
raters = pd.read_csv(csvs["bboxes_raters"])
meta = pd.read_csv(csvs["case_metadata"])
captions["case_id"] = captions["filename"].str.extract(r"^(case\d+)_")
gold_grouped = gold.groupby("filename").apply(
lambda df: df[["x", "y", "width", "height"]].astype(float).to_dict(orient="records")
).to_dict()
raters_grouped = raters.groupby("filename").apply(
lambda df: df[["rater", "x", "y", "width", "height"]].astype({"x": float, "y": float, "width": float, "height": float}).to_dict(orient="records")
).to_dict()
meta = meta.set_index("case_id").to_dict("index")
images_map = {os.path.basename(f): f for f in image_files}
for idx, row in captions.iterrows():
filename = row["filename"]
case_id = row["case_id"]
record = {
"image": images_map.get(filename, None),
"filename": filename,
"caption": row["caption"],
"case_id": case_id,
"scan_id": str(row["scan_id"]),
"bbox_gold": gold_grouped.get(filename, []),
"bbox_raters": raters_grouped.get(filename, []),
}
if case_id in meta:
record.update(meta[case_id])
else:
record.update({k: "" for k in ["title", "publication_date", "clinical_history", "differential_diagnosis", "final_diagnosis", "link"]})
yield idx, record