Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -131,14 +131,269 @@ The TALI dataset consists of the following modalities:
|
|
| 131 |
4. Video
|
| 132 |
1. YouTube Content Video
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
-
- TALI-base: Contains about 6.5 million 30-second video clips, aligned with 120K WiT entries.
|
| 139 |
-
- TALI-big: Contains about 13 million 30-second video clips, aligned with 120K WiT entries.
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
### Dataset Statistics
|
|
|
|
| 131 |
4. Video
|
| 132 |
1. YouTube Content Video
|
| 133 |
|
| 134 |
+
## Usage:
|
| 135 |
+
To get started with TALI, you can load the dataset via Hugging Face's `datasets` library through our helper functions. The reason we don't use `datasets` directly is because we found huggingface_hub downloads much faster and reliable. For a full set of possible configurations look at [examples.py](examples.py). Here's a basic usage example:
|
| 136 |
|
| 137 |
+
First install the tali package:
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
### Installation
|
| 140 |
+
|
| 141 |
+
For the default install use:
|
| 142 |
+
|
| 143 |
+
```bash
|
| 144 |
+
pip install git+https://github.com/AntreasAntoniou/TALI
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
For the dev install use:
|
| 148 |
+
|
| 149 |
+
```bash
|
| 150 |
+
pip install git+https://github.com/AntreasAntoniou/TALI[dev]
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
Then use the dataset using:
|
| 154 |
+
|
| 155 |
+
### Examples
|
| 156 |
+
Import relevant helper functions
|
| 157 |
+
```python
|
| 158 |
+
import pathlib
|
| 159 |
+
from enum import Enum
|
| 160 |
+
|
| 161 |
+
import torch
|
| 162 |
+
from tqdm.auto import tqdm
|
| 163 |
+
|
| 164 |
+
from tali.data import (
|
| 165 |
+
SubModalityTypes,
|
| 166 |
+
TALIBaseTransform,
|
| 167 |
+
TALIBaseTransformConfig,
|
| 168 |
+
VideoFramesFormat,
|
| 169 |
+
default_transforms,
|
| 170 |
+
load_dataset_via_hub,
|
| 171 |
+
)
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
#### TALI with default transforms (CLIP and Whisper) and no streaming
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
def tali_with_transforms_no_streaming(
|
| 178 |
+
dataset_storage_path: pathlib.Path | str,
|
| 179 |
+
):
|
| 180 |
+
if isinstance(dataset_storage_path, str):
|
| 181 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
| 182 |
+
|
| 183 |
+
dataset = load_dataset_via_hub(
|
| 184 |
+
dataset_storage_path, dataset_name="Antreas/TALI"
|
| 185 |
+
)["train"]
|
| 186 |
+
|
| 187 |
+
(
|
| 188 |
+
image_transforms,
|
| 189 |
+
text_transforms,
|
| 190 |
+
audio_transforms,
|
| 191 |
+
video_transforms,
|
| 192 |
+
) = default_transforms()
|
| 193 |
+
|
| 194 |
+
preprocessing_transform = TALIBaseTransform(
|
| 195 |
+
cache_dir=dataset_storage_path / "cache",
|
| 196 |
+
text_tokenizer=text_transforms,
|
| 197 |
+
image_tokenizer=image_transforms,
|
| 198 |
+
audio_tokenizer=audio_transforms,
|
| 199 |
+
video_tokenizer=video_transforms,
|
| 200 |
+
config=TALIBaseTransformConfig(
|
| 201 |
+
root_filepath=dataset_storage_path,
|
| 202 |
+
modality_list=[
|
| 203 |
+
SubModalityTypes.youtube_content_video,
|
| 204 |
+
SubModalityTypes.youtube_content_audio,
|
| 205 |
+
SubModalityTypes.youtube_random_video_frame,
|
| 206 |
+
SubModalityTypes.youtube_subtitle_text,
|
| 207 |
+
SubModalityTypes.youtube_description_text,
|
| 208 |
+
SubModalityTypes.youtube_title_text,
|
| 209 |
+
SubModalityTypes.wikipedia_caption_image,
|
| 210 |
+
SubModalityTypes.wikipedia_caption_text,
|
| 211 |
+
SubModalityTypes.wikipedia_main_body_text,
|
| 212 |
+
SubModalityTypes.wikipedia_title_text,
|
| 213 |
+
],
|
| 214 |
+
video_frames_format=VideoFramesFormat.PIL,
|
| 215 |
+
),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
for sample in tqdm(dataset):
|
| 219 |
+
sample = preprocessing_transform(sample)
|
| 220 |
+
print(list(sample.keys()))
|
| 221 |
+
for key, value in sample.items():
|
| 222 |
+
if hasattr(value, "shape"):
|
| 223 |
+
print(key, value.shape)
|
| 224 |
+
elif isinstance(value, torch.Tensor):
|
| 225 |
+
print(key, value.shape)
|
| 226 |
+
elif hasattr(value, "__len__"):
|
| 227 |
+
print(key, len(value))
|
| 228 |
+
print(key, type(value))
|
| 229 |
+
|
| 230 |
+
break
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
#### TALI with no transforms and no streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats
|
| 236 |
+
|
| 237 |
+
```python
|
| 238 |
+
def tali_without_transforms_no_streaming(
|
| 239 |
+
dataset_storage_path: pathlib.Path | str,
|
| 240 |
+
):
|
| 241 |
+
if isinstance(dataset_storage_path, str):
|
| 242 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
| 243 |
+
|
| 244 |
+
dataset = load_dataset_via_hub(
|
| 245 |
+
dataset_storage_path, dataset_name="Antreas/TALI"
|
| 246 |
+
)["train"]
|
| 247 |
+
|
| 248 |
+
preprocessing_transform = TALIBaseTransform(
|
| 249 |
+
cache_dir=dataset_storage_path / "cache",
|
| 250 |
+
text_tokenizer=None,
|
| 251 |
+
image_tokenizer=None,
|
| 252 |
+
audio_tokenizer=None,
|
| 253 |
+
video_tokenizer=None,
|
| 254 |
+
config=TALIBaseTransformConfig(
|
| 255 |
+
root_filepath=dataset_storage_path,
|
| 256 |
+
modality_list=[
|
| 257 |
+
SubModalityTypes.youtube_content_video,
|
| 258 |
+
SubModalityTypes.youtube_content_audio,
|
| 259 |
+
SubModalityTypes.youtube_random_video_frame,
|
| 260 |
+
SubModalityTypes.youtube_subtitle_text,
|
| 261 |
+
SubModalityTypes.youtube_description_text,
|
| 262 |
+
SubModalityTypes.youtube_title_text,
|
| 263 |
+
SubModalityTypes.wikipedia_caption_image,
|
| 264 |
+
SubModalityTypes.wikipedia_caption_text,
|
| 265 |
+
SubModalityTypes.wikipedia_main_body_text,
|
| 266 |
+
SubModalityTypes.wikipedia_title_text,
|
| 267 |
+
],
|
| 268 |
+
video_frames_format=VideoFramesFormat.PIL,
|
| 269 |
+
),
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
for sample in tqdm(dataset):
|
| 273 |
+
sample = preprocessing_transform(sample)
|
| 274 |
+
print(list(sample.keys()))
|
| 275 |
+
for key, value in sample.items():
|
| 276 |
+
if hasattr(value, "shape"):
|
| 277 |
+
print(key, value.shape)
|
| 278 |
+
elif isinstance(value, torch.Tensor):
|
| 279 |
+
print(key, value.shape)
|
| 280 |
+
elif hasattr(value, "__len__"):
|
| 281 |
+
print(key, len(value))
|
| 282 |
+
print(key, type(value))
|
| 283 |
+
|
| 284 |
+
break
|
| 285 |
+
```
|
| 286 |
+
|
| 287 |
+
#### TALI with default transforms and streaming
|
| 288 |
+
|
| 289 |
+
```python
|
| 290 |
+
def tali_with_transforms_streaming(
|
| 291 |
+
dataset_storage_path: pathlib.Path | str,
|
| 292 |
+
):
|
| 293 |
+
if isinstance(dataset_storage_path, str):
|
| 294 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
| 295 |
+
|
| 296 |
+
dataset = load_dataset_via_hub(
|
| 297 |
+
dataset_storage_path, dataset_name="Antreas/TALI", streaming=True
|
| 298 |
+
)["train"]
|
| 299 |
+
|
| 300 |
+
(
|
| 301 |
+
image_transforms,
|
| 302 |
+
text_transforms,
|
| 303 |
+
audio_transforms,
|
| 304 |
+
video_transforms,
|
| 305 |
+
) = default_transforms()
|
| 306 |
+
|
| 307 |
+
preprocessing_transform = TALIBaseTransform(
|
| 308 |
+
cache_dir=dataset_storage_path / "cache",
|
| 309 |
+
text_tokenizer=text_transforms,
|
| 310 |
+
image_tokenizer=image_transforms,
|
| 311 |
+
audio_tokenizer=audio_transforms,
|
| 312 |
+
video_tokenizer=video_transforms,
|
| 313 |
+
config=TALIBaseTransformConfig(
|
| 314 |
+
root_filepath=dataset_storage_path,
|
| 315 |
+
modality_list=[
|
| 316 |
+
SubModalityTypes.youtube_content_video,
|
| 317 |
+
SubModalityTypes.youtube_content_audio,
|
| 318 |
+
SubModalityTypes.youtube_random_video_frame,
|
| 319 |
+
SubModalityTypes.youtube_subtitle_text,
|
| 320 |
+
SubModalityTypes.youtube_description_text,
|
| 321 |
+
SubModalityTypes.youtube_title_text,
|
| 322 |
+
SubModalityTypes.wikipedia_caption_image,
|
| 323 |
+
SubModalityTypes.wikipedia_caption_text,
|
| 324 |
+
SubModalityTypes.wikipedia_main_body_text,
|
| 325 |
+
SubModalityTypes.wikipedia_title_text,
|
| 326 |
+
],
|
| 327 |
+
video_frames_format=VideoFramesFormat.PIL,
|
| 328 |
+
),
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
for sample in tqdm(dataset):
|
| 332 |
+
sample = preprocessing_transform(sample)
|
| 333 |
+
print(list(sample.keys()))
|
| 334 |
+
for key, value in sample.items():
|
| 335 |
+
if hasattr(value, "shape"):
|
| 336 |
+
print(key, value.shape)
|
| 337 |
+
elif isinstance(value, torch.Tensor):
|
| 338 |
+
print(key, value.shape)
|
| 339 |
+
elif hasattr(value, "__len__"):
|
| 340 |
+
print(key, len(value))
|
| 341 |
+
print(key, type(value))
|
| 342 |
+
|
| 343 |
+
break
|
| 344 |
+
|
| 345 |
+
```
|
| 346 |
+
|
| 347 |
+
#### TALI with no transforms and streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats
|
| 348 |
+
```python
|
| 349 |
+
def tali_without_transforms_streaming(
|
| 350 |
+
dataset_storage_path: pathlib.Path | str,
|
| 351 |
+
):
|
| 352 |
+
if isinstance(dataset_storage_path, str):
|
| 353 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
| 354 |
+
|
| 355 |
+
dataset = load_dataset_via_hub(
|
| 356 |
+
dataset_storage_path, dataset_name="Antreas/TALI", streaming=True
|
| 357 |
+
)["train"]
|
| 358 |
+
|
| 359 |
+
preprocessing_transform = TALIBaseTransform(
|
| 360 |
+
cache_dir=dataset_storage_path / "cache",
|
| 361 |
+
text_tokenizer=None,
|
| 362 |
+
image_tokenizer=None,
|
| 363 |
+
audio_tokenizer=None,
|
| 364 |
+
video_tokenizer=None,
|
| 365 |
+
config=TALIBaseTransformConfig(
|
| 366 |
+
root_filepath=dataset_storage_path,
|
| 367 |
+
modality_list=[
|
| 368 |
+
SubModalityTypes.youtube_content_video,
|
| 369 |
+
SubModalityTypes.youtube_content_audio,
|
| 370 |
+
SubModalityTypes.youtube_random_video_frame,
|
| 371 |
+
SubModalityTypes.youtube_subtitle_text,
|
| 372 |
+
SubModalityTypes.youtube_description_text,
|
| 373 |
+
SubModalityTypes.youtube_title_text,
|
| 374 |
+
SubModalityTypes.wikipedia_caption_image,
|
| 375 |
+
SubModalityTypes.wikipedia_caption_text,
|
| 376 |
+
SubModalityTypes.wikipedia_main_body_text,
|
| 377 |
+
SubModalityTypes.wikipedia_title_text,
|
| 378 |
+
],
|
| 379 |
+
video_frames_format=VideoFramesFormat.PIL,
|
| 380 |
+
),
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
for sample in tqdm(dataset):
|
| 384 |
+
sample = preprocessing_transform(sample)
|
| 385 |
+
print(list(sample.keys()))
|
| 386 |
+
for key, value in sample.items():
|
| 387 |
+
if hasattr(value, "shape"):
|
| 388 |
+
print(key, value.shape)
|
| 389 |
+
elif isinstance(value, torch.Tensor):
|
| 390 |
+
print(key, value.shape)
|
| 391 |
+
elif hasattr(value, "__len__"):
|
| 392 |
+
print(key, len(value))
|
| 393 |
+
print(key, type(value))
|
| 394 |
+
|
| 395 |
+
break
|
| 396 |
+
```
|
| 397 |
|
| 398 |
|
| 399 |
### Dataset Statistics
|