Upload aitw/prepare_trajectory_grounding.py with huggingface_hub
Browse files
aitw/prepare_trajectory_grounding.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from copy import deepcopy
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import re
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
import multiprocessing
|
9 |
+
|
10 |
+
import sys
|
11 |
+
sys.path.append('./google-research')
|
12 |
+
from android_in_the_wild.action_type import ActionType
|
13 |
+
from android_in_the_wild.visualization_utils import is_tap_action
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
def is_tap(step):
|
17 |
+
return step["results/action_type"][0] == ActionType.DUAL_POINT and is_tap_action(np.array(step["results/yx_touch"]), np.array(step["results/yx_lift"]))
|
18 |
+
|
19 |
+
def encode_action(action_json):
|
20 |
+
"""
|
21 |
+
Encode different types of actions into human-readable descriptions.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
action_json (dict): A dictionary containing action details
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
str: A human-readable description of the action
|
28 |
+
"""
|
29 |
+
action_type = action_json["results/action_type"][0]
|
30 |
+
|
31 |
+
if is_tap(action_json):
|
32 |
+
return "tap on the screen"
|
33 |
+
|
34 |
+
elif action_type == ActionType.DUAL_POINT:
|
35 |
+
# Check scroll direction by comparing y-values
|
36 |
+
start_y, end_y = action_json["results/yx_touch"][1], action_json["results/yx_lift"][1]
|
37 |
+
start_x, end_x = action_json["results/yx_touch"][0], action_json["results/yx_lift"][0]
|
38 |
+
# first decide scroll vertically or horizontally
|
39 |
+
if abs(start_y - end_y) > abs(start_x - end_x):
|
40 |
+
if start_y < end_y:
|
41 |
+
return "scroll down"
|
42 |
+
else:
|
43 |
+
return "scroll up"
|
44 |
+
else:
|
45 |
+
if start_x < end_x:
|
46 |
+
return "scroll right"
|
47 |
+
else:
|
48 |
+
return "scroll left"
|
49 |
+
|
50 |
+
elif action_type == ActionType.TYPE:
|
51 |
+
text_to_type = action_json["results/type_action"][0]
|
52 |
+
return f'TYPE "{text_to_type}"'
|
53 |
+
|
54 |
+
elif action_type == ActionType.PRESS_BACK:
|
55 |
+
return "go to the previous screen"
|
56 |
+
|
57 |
+
elif action_type == ActionType.PRESS_HOME:
|
58 |
+
return "go to the home screen"
|
59 |
+
|
60 |
+
elif action_type == ActionType.PRESS_ENTER:
|
61 |
+
return "press the enter key"
|
62 |
+
|
63 |
+
elif action_type == ActionType.STATUS_TASK_COMPLETE:
|
64 |
+
return "task completed"
|
65 |
+
|
66 |
+
elif action_type == ActionType.STATUS_TASK_IMPOSSIBLE:
|
67 |
+
return "task impossible"
|
68 |
+
|
69 |
+
else:
|
70 |
+
raise ValueError(f"Unknown action type: {action_type}")
|
71 |
+
|
72 |
+
def resize_image(image, scale=0.75):
|
73 |
+
"""
|
74 |
+
Resize image to have its shorter edge equal to 720 pixels while maintaining aspect ratio.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
image: PIL Image object
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Resized PIL Image
|
81 |
+
"""
|
82 |
+
# Get current dimensions
|
83 |
+
width, height = image.size
|
84 |
+
|
85 |
+
# Calculate new dimensions
|
86 |
+
new_width = int(width * scale)
|
87 |
+
new_height = int(height * scale)
|
88 |
+
|
89 |
+
# Resize image
|
90 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
91 |
+
return resized_image
|
92 |
+
|
93 |
+
def merge_convs(conversations):
|
94 |
+
"""
|
95 |
+
Merge all successive 'human' conversations comprehensively.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
conversations (list): List of conversation dictionaries
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
list: Processed conversations with all successive human messages merged
|
102 |
+
|
103 |
+
Raises:
|
104 |
+
ValueError: If input is not a list or contains invalid conversation dictionaries
|
105 |
+
"""
|
106 |
+
# Validate input
|
107 |
+
if not isinstance(conversations, list):
|
108 |
+
raise ValueError("Input must be a list of conversation dictionaries")
|
109 |
+
|
110 |
+
# Validate each conversation dictionary structure
|
111 |
+
for conv in conversations:
|
112 |
+
if not isinstance(conv, dict):
|
113 |
+
raise ValueError("Each conversation must be a dictionary")
|
114 |
+
if 'from' not in conv or 'value' not in conv:
|
115 |
+
raise ValueError("Each conversation must have 'from' and 'value' keys")
|
116 |
+
|
117 |
+
processed_conversations = []
|
118 |
+
i = 0
|
119 |
+
while i < len(conversations):
|
120 |
+
current_conv = conversations[i]
|
121 |
+
|
122 |
+
# If current conversation is 'human', start merging
|
123 |
+
if current_conv['from'] == 'human':
|
124 |
+
# Collect all successive human conversations
|
125 |
+
merged_value = current_conv['value']
|
126 |
+
j = i + 1
|
127 |
+
while j < len(conversations) and conversations[j]['from'] == 'human':
|
128 |
+
merged_value += '\n\n' + conversations[j]['value']
|
129 |
+
j += 1
|
130 |
+
|
131 |
+
# Update current conversation with merged value
|
132 |
+
current_conv['value'] = merged_value
|
133 |
+
|
134 |
+
# Move index to last non-human conversation
|
135 |
+
i = j
|
136 |
+
else:
|
137 |
+
# For non-human conversations, just add to processed list
|
138 |
+
i += 1
|
139 |
+
|
140 |
+
processed_conversations.append(current_conv)
|
141 |
+
|
142 |
+
return processed_conversations
|
143 |
+
|
144 |
+
|
145 |
+
def parse_reasoning(input_string):
|
146 |
+
input_string = input_string.strip()
|
147 |
+
if not input_string.endswith("```"):
|
148 |
+
input_string += "```"
|
149 |
+
# Regex pattern to match texts between ```A```, ```B```, and ```C```
|
150 |
+
pattern = r'```([ABC])\n(.*?)```'
|
151 |
+
|
152 |
+
# Find all matches
|
153 |
+
matches = re.findall(pattern, input_string, re.DOTALL)
|
154 |
+
|
155 |
+
# Create a dictionary to store parsed texts
|
156 |
+
parsed_texts = []
|
157 |
+
|
158 |
+
# Populate the dictionary
|
159 |
+
for _, text in matches:
|
160 |
+
parsed_texts.append(text.strip())
|
161 |
+
|
162 |
+
if len(parsed_texts) != 3:
|
163 |
+
# print(input_string)
|
164 |
+
return None, None, None
|
165 |
+
|
166 |
+
caption, reasoning, instruction = parsed_texts
|
167 |
+
|
168 |
+
return caption, instruction.replace("Task: ", ""), reasoning
|
169 |
+
|
170 |
+
grounding_step_prompt = "<|img|>Step {step_idx}. Given a GUI image, what are the relative (0-1000) pixel point coordinates for the element corresponding to the following instruction or description: {instruction}"
|
171 |
+
grounding_step_ans = "```\n{point_str}\n```"
|
172 |
+
act_step_prompt = "<|img|>Step {step_idx}. Instruction: {prev_instruction}"
|
173 |
+
act_step_ans = "The agent's action: {prev_action}"
|
174 |
+
user_start_prompt = "The agent is performing the ultimate task: {ultimate_task}."
|
175 |
+
user_history_instr_prompt = "History of the agent's steps:\n{history_list}."
|
176 |
+
|
177 |
+
resize_ratios_per_window_size = {
|
178 |
+
1: 0.5,
|
179 |
+
2: 0.5,
|
180 |
+
3: 0.5,
|
181 |
+
}
|
182 |
+
|
183 |
+
def process_android_episodes(data, window_size=2):
|
184 |
+
"""
|
185 |
+
Process Android episodes and extract steps with click or long_press actions.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
data (list): List of episode dictionaries
|
189 |
+
window_size (int, optional): Number of recent image-included conversations to include.
|
190 |
+
Defaults to 3 (current image + 2 previous image-included steps).
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
dict: Dictionary with episode_id as key and list of filtered steps as value
|
194 |
+
"""
|
195 |
+
instructions = []
|
196 |
+
for episode in data:
|
197 |
+
episode_id = episode["episode_id"]
|
198 |
+
|
199 |
+
for i, step in enumerate(episode["steps"]):
|
200 |
+
is_grounding = step["is_grounding"]
|
201 |
+
|
202 |
+
if not is_grounding:
|
203 |
+
continue
|
204 |
+
|
205 |
+
if window_size > 0 and i == 0: # skip the first step if window_size > 0
|
206 |
+
continue
|
207 |
+
|
208 |
+
convs = [
|
209 |
+
{
|
210 |
+
"from": "human",
|
211 |
+
"value": user_start_prompt.format(
|
212 |
+
ultimate_task=episode["goal_info"][0]
|
213 |
+
),
|
214 |
+
},
|
215 |
+
]
|
216 |
+
|
217 |
+
cur_img_list = [Path(step["image_path"]).resolve()]
|
218 |
+
|
219 |
+
if window_size > 0:
|
220 |
+
window_steps = episode["steps"][i-window_size:i] if i >= window_size else episode["steps"][:i]
|
221 |
+
|
222 |
+
if i > window_size: # has more history steps larger than window_size
|
223 |
+
convs.append(
|
224 |
+
{
|
225 |
+
"from": "human",
|
226 |
+
"value": user_history_instr_prompt.format(
|
227 |
+
history_list="\n".join(
|
228 |
+
[
|
229 |
+
f"\t{j+1}. " + prev_step["step_instruction"]
|
230 |
+
for j, prev_step in enumerate(episode["steps"][:i-window_size])
|
231 |
+
]
|
232 |
+
)
|
233 |
+
),
|
234 |
+
},
|
235 |
+
)
|
236 |
+
|
237 |
+
convs.append(
|
238 |
+
{
|
239 |
+
"from": "human",
|
240 |
+
"value": "The recent steps with the GUI images are as follows:\n",
|
241 |
+
}
|
242 |
+
)
|
243 |
+
|
244 |
+
for j, win_step_i in enumerate(window_steps):
|
245 |
+
if win_step_i["is_grounding"]:
|
246 |
+
convs.append(
|
247 |
+
{
|
248 |
+
"from": "human",
|
249 |
+
"value": grounding_step_prompt.format(
|
250 |
+
instruction=win_step_i["step_instruction"], step_idx=i+1-(len(window_steps)-j)
|
251 |
+
),
|
252 |
+
}
|
253 |
+
)
|
254 |
+
convs.append(
|
255 |
+
{
|
256 |
+
"from": "gpt",
|
257 |
+
"value": grounding_step_ans.format(point_str=f"({win_step_i['coord_norm'][0]}, {win_step_i['coord_norm'][1]})"),
|
258 |
+
}
|
259 |
+
)
|
260 |
+
else:
|
261 |
+
convs.append(
|
262 |
+
{
|
263 |
+
"from": "human",
|
264 |
+
"value": act_step_prompt.format(
|
265 |
+
prev_instruction=encode_action(win_step_i), step_idx=i+1-(len(window_steps)-j)
|
266 |
+
),
|
267 |
+
}
|
268 |
+
)
|
269 |
+
convs.append(
|
270 |
+
{
|
271 |
+
"from": "human",
|
272 |
+
"value": act_step_ans.format(
|
273 |
+
prev_action=encode_action(win_step_i)
|
274 |
+
),
|
275 |
+
}
|
276 |
+
)
|
277 |
+
win_img_list = [
|
278 |
+
Path(win_step["image_path"]).resolve() for win_step in window_steps
|
279 |
+
]
|
280 |
+
|
281 |
+
if not all([img_path.exists() for img_path in img_list]):
|
282 |
+
print(f"Image not found for episode {episode_id}, step {i+1}. Skipping...")
|
283 |
+
continue
|
284 |
+
|
285 |
+
has_img_broken = False
|
286 |
+
for img_path in img_list:
|
287 |
+
try:
|
288 |
+
Image.open(str(img_path))
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Error opening image {img_path}: {e}")
|
291 |
+
has_img_broken = True
|
292 |
+
break
|
293 |
+
if has_img_broken:
|
294 |
+
print(f"Image broken for episode {episode_id}, step {i+1}. Skipping...")
|
295 |
+
continue
|
296 |
+
|
297 |
+
resize_scale = resize_ratios_per_window_size[window_size]
|
298 |
+
win_img_list_resized = []
|
299 |
+
try:
|
300 |
+
for img_path in win_img_list:
|
301 |
+
new_save_name = img_path.stem + f"_{resize_scale}x" + img_path.suffix
|
302 |
+
new_save_dir = img_path.parent.parent / f"images_resized"
|
303 |
+
new_save_dir.mkdir(parents=True, exist_ok=True)
|
304 |
+
new_save_path = new_save_dir / new_save_name
|
305 |
+
if new_save_path.exists():
|
306 |
+
win_img_list_resized.append(new_save_path)
|
307 |
+
continue
|
308 |
+
win_img = Image.open(str(img_path))
|
309 |
+
win_img = resize_image(win_img, scale=resize_scale)
|
310 |
+
win_img.save(str(new_save_path))
|
311 |
+
win_img_list_resized.append(new_save_path)
|
312 |
+
except Exception as e:
|
313 |
+
print(f"Error resizing image: {e}: {win_img_list}")
|
314 |
+
continue
|
315 |
+
|
316 |
+
else:
|
317 |
+
convs.append(
|
318 |
+
{
|
319 |
+
"from": "human",
|
320 |
+
"value": user_history_instr_prompt.format(
|
321 |
+
history_list="\n".join(
|
322 |
+
[
|
323 |
+
f"\t{j+1}. " + prev_step["step_instruction"]
|
324 |
+
for j, prev_step in enumerate(episode["steps"][:i-window_size])
|
325 |
+
]
|
326 |
+
)
|
327 |
+
),
|
328 |
+
},
|
329 |
+
)
|
330 |
+
|
331 |
+
if window_size > 0:
|
332 |
+
img_list = win_img_list_resized + cur_img_list
|
333 |
+
else:
|
334 |
+
img_list = cur_img_list
|
335 |
+
|
336 |
+
has_img_broken = False
|
337 |
+
for img_path in img_list:
|
338 |
+
try:
|
339 |
+
Image.open(str(img_path))
|
340 |
+
except Exception as e:
|
341 |
+
print(f"Error opening image {img_path}: {e}")
|
342 |
+
has_img_broken = True
|
343 |
+
break
|
344 |
+
if has_img_broken:
|
345 |
+
print(f"Image broken for episode {episode_id}, step {i+1}. Skipping...")
|
346 |
+
continue
|
347 |
+
|
348 |
+
# Current step details
|
349 |
+
convs.append(
|
350 |
+
{
|
351 |
+
"from": "human",
|
352 |
+
"value": grounding_step_prompt.format(instruction=step["step_instruction"], step_idx=i+1),
|
353 |
+
}
|
354 |
+
)
|
355 |
+
convs.append(
|
356 |
+
{
|
357 |
+
"from": "gpt",
|
358 |
+
"value": grounding_step_ans.format(point_str=f"({step['coord_norm'][0]}, {step['coord_norm'][1]})"),
|
359 |
+
}
|
360 |
+
)
|
361 |
+
|
362 |
+
convs = merge_convs(convs)
|
363 |
+
|
364 |
+
instructions.append(
|
365 |
+
{
|
366 |
+
"image": [str(img_path) for img_path in img_list],
|
367 |
+
"conversations": convs,
|
368 |
+
}
|
369 |
+
)
|
370 |
+
|
371 |
+
return instructions
|
372 |
+
|
373 |
+
# Example usage
|
374 |
+
if __name__ == "__main__":
|
375 |
+
dataset_directories = {
|
376 |
+
'general': './general_episodes_with_grounding_reasoning',
|
377 |
+
'google_apps': './google_apps_episodes_with_grounding_reasoning',
|
378 |
+
'install': './install_episodes_with_grounding_reasoning_valid',
|
379 |
+
'web_shopping': './web_shopping_episodes_with_grounding_reasoning',
|
380 |
+
}
|
381 |
+
|
382 |
+
episode_data_list = []
|
383 |
+
for dataset_name, directory_path in dataset_directories.items():
|
384 |
+
episode_data_list.extend(list(Path(directory_path).glob("*.json")))
|
385 |
+
episode_data_list = [json.load(open(str(file_path), "r", encoding="utf-8")) for file_path in episode_data_list]
|
386 |
+
|
387 |
+
episode_data_list_new = []
|
388 |
+
for episode_data in tqdm(episode_data_list, desc="Parsing fields..."):
|
389 |
+
for step in episode_data:
|
390 |
+
step["image_path"] = step["image_path"][0] if isinstance(step["image_path"], list) else step["image_path"]
|
391 |
+
if "grounding_reasoning" not in step or not step["grounding_reasoning"]:
|
392 |
+
step["step_instruction"] = encode_action(step)
|
393 |
+
step["is_grounding"] = False
|
394 |
+
continue
|
395 |
+
|
396 |
+
caption, instruction, reasoning = parse_reasoning(step["grounding_reasoning"])
|
397 |
+
step["step_instruction"] = instruction if instruction else encode_action(step)
|
398 |
+
step["caption"] = caption
|
399 |
+
step["reasoning"] = reasoning
|
400 |
+
step["is_grounding"] = not(not instruction)
|
401 |
+
step["coord_norm"] = (int(step["results/yx_touch"][1] * 1000), int(step["results/yx_touch"][0] * 1000))
|
402 |
+
episode_data = {
|
403 |
+
"episode_id": episode_data[0]["episode_id"],
|
404 |
+
"goal_info": episode_data[0]["goal_info"],
|
405 |
+
"steps": episode_data,
|
406 |
+
}
|
407 |
+
episode_data_list_new.append(episode_data)
|
408 |
+
|
409 |
+
# window_size_list = [1, 2, 3]
|
410 |
+
window_size_list = [0, 1, 2, 3]
|
411 |
+
|
412 |
+
def process_episode(args):
|
413 |
+
episode, window_size = args
|
414 |
+
return process_android_episodes([episode], window_size)
|
415 |
+
|
416 |
+
instructions = []
|
417 |
+
for window_size in window_size_list:
|
418 |
+
tasks = [(episode, window_size) for episode in episode_data_list_new]
|
419 |
+
with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:
|
420 |
+
results = list(tqdm(pool.imap(process_episode, tasks), total=len(tasks), desc=f"Window Size {window_size}"))
|
421 |
+
for result in results:
|
422 |
+
instructions.extend(result)
|
423 |
+
|
424 |
+
print(f"Number of context aware train instructions: {len(instructions)}")
|
425 |
+
|
426 |
+
with open(f"aitw_window_{'-'.join([str(e) for e in window_size_list])}_{len(instructions)//1000}k.json", "w", encoding="utf-8") as file:
|
427 |
+
json.dump(instructions, file, ensure_ascii=False, indent=4)
|