File size: 5,896 Bytes
185d974
 
 
 
 
 
 
 
 
 
169dbc0
 
185d974
 
188b5f3
a8e6ed3
188b5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e6ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188b5f3
 
 
 
 
a8e6ed3
 
 
 
185d974
 
 
 
 
0bad650
185d974
 
c226569
 
51eb507
185d974
 
 
 
 
 
169dbc0
747d8f8
 
 
 
 
 
169dbc0
51eb507
 
 
39543a3
169dbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51eb507
169dbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51eb507
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: cc-by-4.0
task_categories:
- image-text-to-text
- image-feature-extraction
language:
- en
tags:
- pdf
- ocr
- legal
- government
size_categories:
- 100K<n<1M
dataset_info:
- config_name: index
  features:
  - name: filename
    dtype: string
  - name: filepath
    dtype: string
  - name: broken_pdf
    dtype: bool
  - name: num_pages
    dtype: float64
  - name: created_date
    dtype: string
  - name: modified_date
    dtype: string
  - name: title
    dtype: string
  - name: author
    dtype: string
  - name: subject
    dtype: string
  - name: file_size_mb
    dtype: float64
  - name: error_message
    dtype: string
  splits:
  - name: train
    num_bytes: 39695484
    num_examples: 229917
  download_size: 19387703
  dataset_size: 39695484
- config_name: sample
  features:
  - name: pdf
    dtype: pdf
  - name: num_pages
    dtype: float64
  - name: created_date
    dtype: string
  - name: modified_date
    dtype: string
  - name: title
    dtype: string
  - name: author
    dtype: string
  - name: subject
    dtype: string
  - name: file_size_mb
    dtype: float64
  - name: broken_pdf
    dtype: bool
  - name: error_message
    dtype: string
  splits:
  - name: train
    num_bytes: 879832.0
    num_examples: 5000
  download_size: 400528
  dataset_size: 879832.0
configs:
- config_name: index
  data_files:
  - split: train
    path: index/train-*
- config_name: sample
  data_files:
  - split: train
    path: sample/train-*
---

# govdocs1: source PDF files


This is ~220,000 open-access PDF documents (about 6.6M pages) from the dataset [govdocs1](https://digitalcorpora.org/corpora/file-corpora/files/). It wants to be OCR'd.


- Uploaded as `tar` file pieces of ~10 GiB each due to size/file count limits with an [index.csv](data/index.csv) covering details
- 5,000 randomly sampled PDFs are available unarchived in `sample/`. Hugging Face supports previewing these in-browser, for example [this one](sample/001070.pdf)

## Recovering the data

Download the `data/` directory (with `huggingface-cli download` or similar) extract the tar pieces:

```sh
cat data_pdfs_part.tar.* | tar -xf - && rm data_pdfs_part.tar.*
```
 
## processing details

### duplicates

exact duplicate PDFs were removed with `jdupes`. See the [log file](exact_duplicate_removal.log) for details.  

---


## By the numbers

Based on the [index.csv](data/index.csv)

### Dataset Overview

| Metric | Value | Percentage |
|--------|-------|------------|
| Total Documents | 229,917 | 100% |
| Successfully Processed | 229,824 | 99.96% |
| Broken/Corrupted | 93 | 0.04% |
| Unique Filenames | 229,917 | 100% |

### Document Structure

#### Page Count Distribution

| Pages | Count | Percentage |
|-------|-------|------------|
| 2 pages | 21,887 | 9.5% |
| 1 page | 19,282 | 8.4% |
| 4 pages | 14,640 | 6.4% |
| 3 pages | 12,861 | 5.6% |
| 6 pages | 9,770 | 4.3% |

| Statistic | Value |
|-----------|-------|
| **Range** | 1 - 3,200 pages |
| **Mean** | 27.8 pages |
| **Median** | 10 pages |
| **Standard Deviation** | 67.9 pages |

#### File Size Distribution

| Size (MB) | Count | Percentage |
|-----------|-------|------------|
| 0.02 | 13,427 | 5.8% |
| 0.03 | 12,142 | 5.3% |
| 0.04 | 12,085 | 5.3% |
| 0.05 | 11,850 | 5.2% |
| 0.01 | 9,929 | 4.3% |

| Statistic | Value |
|-----------|-------|
| **Range** | 0 - 68.83 MB |
| **Mean** | 0.565 MB |
| **Median** | 0.15 MB |
| **Standard Deviation** | 1.134 MB |

### Metadata Completeness Crisis

| Field | Missing | Present | Completeness |
|-------|---------|---------|--------------|
| **Subject** | 182,430 | 47,487 | **20.6%** |
| **Author** | 78,269 | 151,648 | **66.0%** |
| **Title** | 51,514 | 178,403 | **77.6%** |
| **Created Date** | 3,260 | 226,657 | **98.6%** |

#### Title Quality Breakdown

| Title Type | Count | Percentage |
|------------|-------|------------|
| Missing (None) | 51,514 | 22.4% |
| Generic "Document" | 11,699 | 5.1% |
| "untitled" | 2,081 | 0.9% |
| Meaningful titles | ~165,000 | 71.6% |

#### Top Authors

| Author | Count |
|--------|-------|
| U.S. Government Printing Office | 11,838 |
| Unknown | 3,477 |
| Administrator | 1,630 |
| U.S. Government Accountability Office | 1,390 |

#### Top Subjects

| Subject | Count |
|---------|-------|
| Extracted Pages | 11,692 |
| NIOSH HHE REPORT | 466 |
| CMS Opinion Template | 353 |
| SEC Financial Proposals Summary | 230 |

### Processing Errors

| Error Type | Count | Percentage |
|------------|-------|------------|
| Could not read Boolean object | 46 | 49.5% |
| cryptography>=3.1 required for AES | 15 | 16.1% |
| Stream ended unexpectedly | 9 | 9.7% |
| 'NullObject' has no attribute 'get' | 5 | 5.4% |
| Other errors | 18 | 19.4% |

### Temporal Coverage

| Date Field | Range | Issues |
|------------|-------|--------|
| **Modified Date** | 1979-12-31 to 2025-03-31 | (dates in 2023-2025 are incorrect/defaulted to) |
| **Created Date** | Various formats | 1,573 invalid "D:00000101000000Z" |

### Critical Assessment

> [!NOTE]
> Generated by Claude Sonnet-4, unsolicited (_as always_)

#### Data Quality Issues

| Issue | Severity | Impact |
|-------|----------|---------|
| **Metadata Poverty** | **CRITICAL** | 79% missing subjects kills discoverability |
| **Title Degradation** | **HIGH** | 28% generic/missing titles |
| **Date Inconsistencies** | **MEDIUM** | Invalid formats, future dates |
| **Processing Errors** | **LOW** | 0.04% failure rate acceptable |

#### Key Insights

**Document Profile**: Typical government PDF = 10 pages, 0.15 MB, metadata-poor

**Fatal Flaw**: This dataset has excellent technical extraction (99.96% success) but catastrophic intellectual organization. You're essentially working with 230K unlabeled documents.

**Bottom Line**: The structural data is solid, but without subject classification for 79% of documents, this is an unindexed digital landfill masquerading as an archive.

---