FOCI No: 3MF02

DRAFT CRUISE INSTRUCTIONS FOCI

NOAA Ship MILLER FREEMAN, MF-02-06 May 12 – May 21, 2002 Chief Scientist: Morgan Busby

1.0 DRAFT CRUISE INSTRUCTIONS

- 1.1 Cruise Title Fisheries-Oceanography Coordinated Investigations (FOCI).
- 1.2 <u>Cruise Numbers</u>:
 - **1.2.1** Cruise Number MF-02-06
 - **1.2.2 FOCI Number** 3MF02
- 1.3 Cruise Dates:
 - **1.3.1 Departure** Depart Dutch Harbor, Alaska, at 1500 on May 12, 2002.
 - **1.3.2** Arrival Arrive Dutch Harbor, Alaska, at 0800 on May 21, 2002

2.0 CRUISE OVERVIEW

- **2.1** <u>Cruise Objectives</u> We will be conducting an ichthyoplankton survey in the Bering Sea in the vicinity of Unimak Island, Alaska. This work is needed to describe larval fish assemblages in the Bering Sea (slope, outer shelf, and middle shelf) in spring. Zooplankton data and data on physical characteristics of the water column will also be collected.
- **2.2** Applicability These instructions, with *FOCI Standard Operating Instructions for NOAA*Ship MILLER FREEMAN, dated February 4, 2002, present complete information for this cruise.
- **2.3** Operating Area –Southeastern Bering Sea
- 2.4 Participating Organizations

NOAA – Alaska Fisheries Science Center (AFSC) 7600 Sand Point Way N.E., Seattle, Washington 98115-0070

FOCI No: 3MF02

2.5 Personnel

2.5.1 Chief Scientist

Name	Gender	Affiliation	E-mail Address
Morgan Busby	Male	AFSC	Morgan.Busby@noaa.gov
(206) 526-4113			

2.5.2 Participating Scientists

Name	Gender	Affiliation	E-mail Address
Morgan Busby	Male	AFSC	Morgan.Busby@noaa.gov
Debbie Blood	Female	AFSC	Debbie.Blood@noaa.gov
Christina Deliyanides	Female	AFSC	Christina.Deliyanides@noaa.gov
Ann Matarese	Female	AFSC	Ann.Matarese@noaa.gov
Kathy Mier	Female	AFSC	Kathy.Mier@noaa.gov
Susan Picquelle	Female	AFSC	Susan.Picquelle@noaa.gov

2.6 Administrative

2.6.1 Ship Operations

Marine Operations Center, Pacific

1801 Fairview Avenue East, Seattle, Washington 98102-3767

Telephone: (206) 553-4548, Fax: (206) 553-1109

Commander Timothy B. Wright, NOAA Chief, Operations Division (MOP1)

Telephone: (206) 553-8705, Cellular: (206) 390-7527

E-mail: Timothy.Wright@noaa.gov

Larry Mordock

Deputy Chief, Operations Division (MOP1x1)

Telephone – Work: (206) 553-4764, Home: (206) 365-3567 Cellular: (206) 465-9316, E-mail: <u>Larry.Mordock@noaa.gov</u>

2.6.2 Scientific Operations

Dr. Phyllis J. Stabeno, PMEL
Telephone: (206) 526-6453
Telephone: (206) 526-4148
E-mail: Phyllis.Stabeno@noaa.gov
Telephone: (206) 526-4148
E-mail: Jeff.Napp@noaa.gov

3.0 OPERATIONS

3.1 Data To Be Collected – A goal of the FOCI program is to identify the physical and biological factors that underlie ecosystem change and to understand how those factors interact. One focus is the effects of perturbations at lower trophic levels. To this end, we will collect ichthyoplankton and zooplankton data using 60-cm Bongo nets (60BON) and 20-cm Bongo

FOCI No: 3MF02

nets (20BON), a Neuston net, and CalVET nets. Rough counts from 60BON Net 2 will be used to provide immediate estimates of larval walleye pollock distribution and abundance in the survey area. We will collect data on the physical environment using the Sea-Bird Electronics SBE 19 SEACAT Profiler to relate larval assemblage structure to environmental variables (temperature, salinity). Sea-Bird Electronics SBE 911plus CTD casts will collect physical data as well as data on nutrients, microzooplankton, and chlorophyll. This cruise will provide new information on larval fish assemblages on the Bering Sea shelf in the spring. Samples will be collected from a grid of approximately 75 stations.

Note: It is possible that not all stations from this grid will be occupied.

- **3.1.1** Scientific Computer System (SCS) The ship's SCS shall operate throughout the cruise, acquiring and logging data from navigation, meteorological, oceanographic, and fisheries sensors. See *FOCI Standard Operating Instructions for NOAA Ship MILLER FREEMAN* (SOI 5.2) for specific requirements.
- **3.2** Staging Plan The majority of the equipment necessary for the cruise will be loaded onto the **NOAA ship** *MILLER FREEMAN* before the ship's departure from Seattle, Washington, on April 21, 2002. We will use the chemistry lab, the rough lab, and the slime lab for sample and equipment preparation and request as much counter and cabinet space as possible. We will use DataPlot for CTD and SEACAT operations.
- **3.3** <u>De-staging Plan</u> Samples and gear will remain on board the ship until the completion of cruise MF-02-07 where the samples will be offloaded in Kodiak, Alaska, on June 1, 2002. Sampling equipment will remain on board, in the hold, for use during cruise MF-02-11.
- 3.4 <u>Cruise Plan</u> The cruise will depart from Dutch Harbor, Alaska, at 1500 on May 12, 2002, and occupy a series of approximately 75 stations on the Bering Sea FOCI grid. The first station is located immediately outside of Dutch Harbor, Alaska. Station positions and a chartlet of the working area are located in sections 9.2 <u>Tables</u> and 9.3 <u>Figures</u>, respectively.

At every station, a Neuston net will be deployed first to collect fish larvae in the surface layer. Samples from the Neuston net gear will be preserved in 1.8% buffered Formaldehyde.

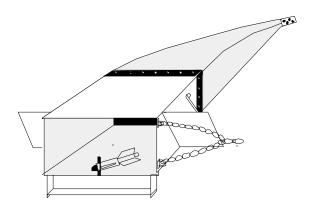
Following completion of the neuston tow, a MARMAP Bongo tow (SOI 3.2.2) will be conducted. The SBE 19 SEACAT, the 20-cm Bongo net with 0.150-mm mesh netting and the 60-cm Bongo net with 0.333-mm mesh netting will all be mounted together for this tow. Bongo tows will be to a depth of 300 meters, or to 10 meters off bottom, whichever is deeper. The sample from 60BON Net 1 will be preserved in its entirety in 1.8% buffered Formaldehyde, and the sample from Net 2 will be sorted for walleye pollock and other ichthyoplankton and the stored fraction will be preserved in 95% Ethanol. The sample from 20BON Net 1 will be preserved in its entirety in 1.8% buffered Formaldehyde; the sample from Net 2 will be discarded.

Selected stations have been chosen for CTD casts to collect water samples for microzooplankton, chlorophyll, and nutrient data (SOI 3.2.1). At these stations, the CTD cast will precede the MARMAP Bongo tow. CTD casts will be made to 300 meters, or to 10 meters off bottom, whichever is deeper.

FOCI No: 3MF02

Selected stations have also been chosen for CalVET tows (SOI 3.2.6). At these stations, the CalVET tow with 0.053-mm mesh netting will follow the MARMAP Bongo tow. The CalVET tows, both nets combined, will be preserved in 1.8% buffered Formaldehyde.

3.5 <u>Station Locations</u> – See section 9.2 <u>Tables</u>.


3.6 <u>Station Operations</u> – The following are operations to be conducted on this cruise. The procedures for these operations are listed in the *FOCI Standard Operating Instructions for NOAA Ship MILLER FREEMAN* (SOI). Operations not addressed in the SOI are addressed below.

- CTD/Water Samples Operations (SOI 3.2.1),
- MARMAP Bongo Tows (SOI 3.2.2),
- CalVET Net Tows (SOL 3.2.6), and
- Chlorophyll Sampling Operations (SOI 3.2.10).

3.6.1 Neuston Net Tows

3.6.1.1 Description -

Neuston nets are used for sampling the upper few centimeters of the water column. There are many frame styles that may be used; however, we use a Sameoto sampler made of stainless steel. The mouth opening is 30-cm x 50-cm and is designed to fish half in and half out of the water.

Sameoto Neuston Sampler

3.6.1.2 Assembly – If the frame is not already put together, some assembly will be required. There are two wings that need to be matched up to the holes on the frame and bolted on. Then bolt on the struts that reinforce the wings. There are a series of holes on the aft end of the frame that the net attaches to with metal straps and bolts. If the net does not already have holes, make them. Slide the net over the frame in the position to be used and use a marking pen to indicate where holes are to be made. Remove and cut holes using scissors, reattach the net, and secure with the metal straps and bolts. The Sameoto sampler is designed to be towed from the side to provide an unobstructed mouth opening. Make sure the towing chain (bridle) is connected to the proper side of the frame, depending on which side of the ship you are sampling from. Some repositioning of the swivel on the tow chain may be required to provide a proper attitude of the frame, ideally it should fish half in and half out of the water. The flow meter is attached with a special bolt to

FOCI No: 3MF02

the bottom of the frame, just back from the mouth opening. Remove the lanyard pin from behind the nosecone of the flow meter by unscrewing the nosecone and backing off the screw that is holding the pin in place. Place flow meter on pin, making sure the window for reading the revolutions is facing up, and attach.

Note – It may prove helpful, and safer, to attach a long tagline to the frame to assist in getting the frame on board. In heavy winds, the sampler tends to act as a kite.

- 3.6.1.3 Rates/Fishing The vessel should be moving ahead slowly, about 1.5 to 2.0 knots so that the net is fishing half in and half out of the water. The exact speed is a learning process and may vary with sea conditions. Lower the Neuston net to the surface and pay out 10-15 meters of wire. It may be necessary to adjust the ship's speed to maintain the proper skimming action. Start the stopwatch when the net starts to fish and tow the net for ten minutes, unless otherwise instructed. Advise winch operator when time is nearly up and retrieve when ready. Read and record flow meter revolutions, time of tow, and any comments.
- **3.6.1.4** <u>Preservation</u> The Neuston sample should be preserved immediately, as specified in the *FOCI Field Manual* or sample collection request forms.
- **3.6.1.5 Maintenance** Check net for holes and fill flow meter with water.
- 3.7 <u>Underway Operations</u> The following underway operations are to be conducted during this cruise. The procedures for these operations are listed in the *FOCI Standard Operating Instructions for NOAA Ship MILLER FREEMAN* (SOI).
 - Scientific Computer System (SCS) data acquisition (SOI 5.2),
 - Fluorometer monitoring (SOI 5.3), and
 - Thermosalinograph monitoring (SOI 5.3).
- **3.8** Applicable Restrictions None
- 3.9 Small Boat Operations None

4.0 FACILITIES

Equipment and Capabilities Provided by Ship

- Oceanographic winch with slip rings and 3-conductor cable terminated for CTD,
- Manual wire angle indicator,
- Oceanographic winch with slip rings and 3-conductor cable terminated for the SBE SEACAT, for net tow operations,
- Sea-Bird Electronics' SBE 911*plus* CTD system with stand, each CTD system should include underwater CTD, weights, and pinger. There should be one deck unit and tape recorder for the two systems.
- 10-liter Niskin sampling bottles for use with rosette (10 plus 4 spares),
- AUTOSAL salinometer, for CTD field corrections,
- Sea-Bird Electronics' SBE-19 SEACAT system,

FOCI No: 3MF02

- Meter block for plankton tows,
- Wire speed indicators and readout for quarterdeck winches,
- For meteorological observations: 2 anemometers (one R. M. Young system interfaced to the SCS), calibrated air thermometer (wet-and dry-bulb) and a calibrated barometer and/or barograph,
- Freezer space for storage of biological and chemical samples (blast freezer -20°C),
- Bench space in DataPlot for PCs, monitor, printer,
- Use of Pentium PC in DataPlot for data analysis,
- Scientific Computer System (SCS),
- Removable stern platform in place,
- Laboratory space with exhaust hood, sink, lab tables, and storage space,
- · Sea-water hoses and nozzles to wash nets on quarterdeck and aft deck,
- Adequate deck lighting for night-time operations,
- Navigational equipment including GPS and radar,
- · Safety harnesses for working on quarterdeck and fantail, and
- Ship's crane(s) used for loading and/or deploying.

4.1 Equipment and Capabilities Provided by Scientists

- Sea-Bird Electronics' SBE 911*plus* CTD system to be used with PMEL stand (**primary system**),
- Sea-Bird Electronics' SBE-19 SEACAT system (primary system),
- PMEL PC with SEASOFT software for CTD data collection and processing,
- Fluorometer and light meter to be mounted on CTD,
- CTD stand modified for attachment of fluorometer
- Conductivity and temperature sensor package to provide dual sensors on the primary CTD,
- CTD rosette sampler,
- IAPSO standard water,
- 60-cm Bongo sampling arrays,
- 20-cm Bongo arrays,
- Neuston net array
- CalVET net array,
- Spare wire angle indicator,
- Scientific ultra-cold freezer (-80°C),
- Miscellaneous sampling processing equipment, and
- Cruise Operations Database (COD) and forms.

5.0 DISPOSITION OF DATA AND REPORTS

- **5.1** The following data products will be included in the cruise data package:
 - NOAA Form 77-13d Deck Log Weather Observation Sheets,
 - Electronic Marine Operations Abstracts,
 - SCS backup (SCS, TSGF, and ASCII) recordable compact diskette (CD-RW),
 - Calibration Sheets for all ship's instruments used,
 - CTD Cast Information/Rosette Log,
 - CTD VHS videocassettes
 - Autosalinometer logs,
 - Electronic Navigation suite's export files on diskette, and
 - Ultra-cold Freezer Temperature Daily Log (SOI 5.4).

FOCI No: 3MF02

5.2 <u>Pre- and Post-cruise Meetings</u> – Cruise meetings may be held in accordance with <u>FOCI</u>

Standard Operating Instructions for NOAA Ship MILLER FREEMAN (SOI 5.5).

6.0 ADDITIONAL PROJECTS

- **6.1** <u>Definition</u> Ancillary and piggyback projects are secondary to the objectives of the cruise and should be treated as additional investigations. The difference between the two types of secondary projects is that an ancillary project does not have representation aboard and is accomplished by the ship's force.
- **Ancillary Projects** Any ancillary work done during this project will be accomplished with the concurrence of the Chief Scientist and on a not-to-interfere basis with the programs described in these instructions and in accordance with the **NOAA Fleet Standing Ancillary Instructions**.
- **6.3** Piggyback Projects None
- **7.0 HAZARDOUS MATERIALS** All scientific staff on board **NOAA Ship** *MILLER FREEMAN* for this cruise have been properly trained for spill response and may be contacted in the event of an accidental spill.

7.1 <u>Inventory</u>

Chemical	Amount	Neutralizer	Contact
37 % Formaldehyde	3 x 20-Liter Buckets	Spill Kit	Busby
Sodium Borate	500-g	Dust Pan/Water	Busby
95% Reagent Alcohol	1 x 20-Liter Carboy	3-M Sorbent Pads	Busby
Saturated Sodium Borate Solution	1 x 20-Liter Carboy	See Note	Busby

Note – Saturated Sodium Borate Solution is a non-regulated substance by the Department of Transportation (DOT) and does not have Material Data Safety Sheets (MSDS).

7.2 <u>Material Safety Data Sheet (MSDS)</u> – Submitted separately.

8.0 MISCELLANEOUS

8.1 Communications – Specific information on how to contact the **NOAA Ship** *MILLER FREEMAN* and all other fleet vessels can be found at:

http://www.pmc.noaa.gov/phone.htm

FOCI No: 3MF02

8.2 Important Telephone and Facsimile Numbers and E-mail Addresses

8.2.1 Pacific Marine Environmental Laboratory (PMEL):

FOCI – Ocean Environmental Research Division (OERD2):

- (206) 526-4700 (voice)
- (206) 526-6485 (fax)

Administration:

- (206) 526-6810 (voice)
- (206) 526-6815 (fax)

E-Mail: FirstName.LastName@noaa.gov

8.2.2 Alaska Fisheries Science Center (AFSC):

FOCI – Resource Assessment and Conservation Engineering (RACE):

- (206) 526-4171 (voice)
- (206) 526-6723 (fax)

E-Mail: FirstName.LastName@noaa.gov

8.2.3 NOAA Ship MILLER FREEMAN – Telephone methods listed in order of increasing expense:

Homeport – Seattle, Washington:

- (206) 553-4589
- (206) 553-4581
- (206) 553-8344

United States Coast Guard - Kodiak, Alaska

- (907) 487-9752
- (907) 487-9753
- (907) 487-4397
- (907) 487-4398

Cellular:

• (206) 660-7167

INMARSAT Mini-M

- 011-872-761-267-346 (voice/PBX)
- 011-872-761-267-347 (voice)
- 011-872-761-267-348 (fax)

INMARSAT B

- 011-872-330-394-113 (voice)
- 011-872-330-394-114 (fax)

E-Mail: <u>NOAA.Ship.Miller.Freeman@noaa.gov</u> (mention the person's name in SUBJECT field)

FOCI No: 3MF02

8.2.4 Marine Operations Center, Pacific (MOP):

Operations Division (MOP1)

• (206) 553-4548 (voice)

• (206) 553-1109 (facsimile)

E-Mail: FirstName.LastName@noaa.gov

E-Mail to Radio Room: Radio.Room@noaa.gov

9.0 APPENDICES

9.1 **Equipment Inventory**

Equipment	Quantity	Dimension	Weight
Larval Supply Trunks	1	20" x 22" x 36"	80-lbs
Microzooplankton Supply Trunks	2	20" x 22" x 36"	90-lbs (ea)
Formaldehyde Containers	3 x 20-Liter		40-lbs (ea)
Carboy, 95% Reagent Alcohol	1 x 20-Liter		40-lbs
Miscellaneous Gear Trunks	4	20" x 22" x 36"	80-lbs (ea)
60-cm Bongo Frame	1	8" x 26" x 60"	
20-cm Bongo Frame	1	8" x 14" x 16"	
CalVET Frame	1	24" x 18" x 18"	5-lbs
Cases, Glass Jars, 32-oz	30 cases	8" x 12" x 15"	50-lbs
Cases, Glass Jars, 8-oz	10 cases	4" x 6" x 8"	8-lbs

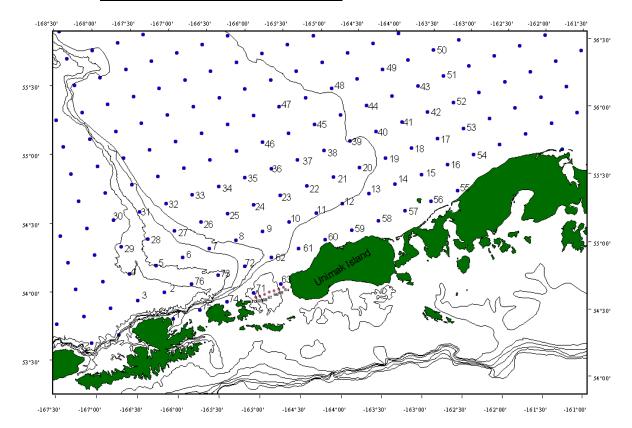
9.2 Tables

Table 1 – MF-02-06 Station Locations

Grid Designation	Station	Lat (Deg)	Lat (Min)	Lon (Deg)	Lon (Min)	Lat (dd)	Lon (dd)
Depart Dutch Harbor, AK	0	53	54.498	166	30.900	53.9083	-166.5150
BM1	1	54	0.660	166	35.418	54.0110	-166.5903
BM4	2	54	13.848	166	47.634	54.2308	-166.7939
BP4	3	54	6.690	167	10.320	54.1115	-167.1720
BP7	4	54	19.878	167	22.572	54.3313	-167.3762
BM7	5	54	27.042	166	59.916	54.4507	-166.9986
BJ7	6	54	34.200	166	37.200	54.5700	-166.6200
BG7	7	54	41.364	166	14.412	54.6894	-166.2402
BD7	8	54	48.522	165	51.564	54.8087	-165.8594
BA7	9	54	55.686	165	28.644	54.9281	-165.4774
AX7	10	55	2.844	165	5.658	55.0474	-165.0943

Cruise No: MF-02-06 FOCI No: 3MF02

Grid	Station	Lat	Lat	Lon	Lon	Lat (dd)	Lon (dd)
Designation		(Deg)	(Min)	(Deg)	(Min)		
AU7	11	55	10.008	164	42.600	55.1668	-164.7100
AR7	12	55	17.166	164	19.476	55.2861	-164.3246
AO7	13	55	24.330	163	56.280	55.4055	-163.9380
AL7	14	55	31.488	163	33.018	55.5248	-163.5503
AI7	15	55	38.652	163	9.678	55.6442	-163.1613
AF7	16	55	45.810	162	46.272	55.7635	-162.7712
AF10	17	55	58.998	162	59.034	55.9833	-162.9839
AI10	18	55	51.840	163	22.404	55.8640	-163.3734
AL10	19	55	44.676	163	45.702	55.7446	-163.7617
AO10	20	55	37.518	164	8.928	55.6253	-164.1488
AR10	21	55	30.354	164	32.088	55.5059	-164.5348
AU10	22	55	23.196	164	55.176	55.3866	-164.9196
AX10	23	55	16.032	165	18.192	55.2672	-165.3032
BA10	24	55	8.874	165	41.142	55.1479	-165.6857
BD10	25	55	1.710	166	4.020	55.0285	-166.0670
BG10	26	54	54.552	166	26.838	54.9092	-166.4473
BJ10	27	54	47.388	166	49.584	54.7898	-166.8264
BM10	28	54	40.230	167	12.270	54.6705	-167.2045
BP10	29	54	33.066	167	34.884	54.5511	-167.5814
BP13	30	54	46.254	167	47.262	54.7709	-167.7877
BM13	31	54	53.418	167	24.684	54.8903	-167.4114
BJ13	32	55	0.576	167	2.040	55.0096	-167.0340
BG13	33	55	7.740	166	39.330	55.1290	-166.6555
BD13	34	55	14.898	166	16.548	55.2483	-166.2758
BA13	35	55	22.062	165	53.706	55.3677	-165.8951
AX13	36	55	29.220	165	30.798	55.4870	-165.5133
AU13	37	55	36.384	165	7.812	55.6064	-165.1302
AR13	38	55	43.542	164	44.766	55.7257	-164.7461
AO13	39	55	50.706	164	21.648	55.8451	-164.3608
AL13	40	55	57.864	163	58.458	55.9644	-163.9743
AI13	41	56	5.028	163	35.202	56.0838	-163.5867
AF13	42	56	12.186	163	11.874	56.2031	-163.1979
AF16	43	56	25.380	163	24.786	56.4230	-163.4131
AL16	44	56	11.058	164	11.058		-164.1843
AR16	45	55	56.736		57.516		-164.9586
AX16	46	55	42.414		43.470	55.7069	-165.7245
AU19	47	56	2.760	165	33.312	56.0460	-165.5552
AO19	48	56	17.082	164	47.304	56.2847	-164.7884
AI19	49	56	31.404		1.020		-164.0170


Cruise No: MF-02-06 FOCI No: 3MF02

Grid Designation	Station	Lat (Deg)	Lat (Min)	Lon (Deg)	Lon (Min)	Lat (dd)	Lon (dd)
AC19	50	56	45.726	163	14.454	56.7621	-163.2409
AC16	51	56	32.538	163	1.428	56.5423	-163.0238
AC13	52	56	19.350	162	48.474	56.3225	-162.8079
AC10	53	56	6.162	162	35.598	56.1027	-162.5933
AC7	54	55	52.974	162	22.794	55.8829	-162.3799
AF4	55	55	32.622	162	33.582	55.5437	-162.5597
AI4	56	55	25.458	162	57.024	55.4243	-162.9504
AL4	57	55	18.300	163	20.400	55.3050	-163.3400
AO4	58	55	11.136	163	43.704	55.1856	-163.7284
AR4	59	55	3.978	164	6.936	55.0663	-164.1156
AU4	60	54	56.814	164	30.096	54.9469	-164.5016
AX4	61	54	49.656	164	53.190	54.8276	-164.8865
BA4	62	54	42.492	165	16.218	54.7082	-165.2703
BA1	63	54	29.304	165	3.852	54.4884	-165.0642
Unimak Pass G	64	54	27.642	165	0.828	54.4607	-165.0138
Unimak Pass F	65	54	26.142	165	5.292	54.4357	-165.0882
Unimak Pass E	66	54	24.900	165	9.012	54.4150	-165.1502
Unimak Pass D	67	54	23.778	165	13.122	54.3963	-165.2187
Unimak Pass C	68	54	22.290	165	17.058	54.3715	-165.2843
Unimak Pass B	69	54	20.952	165	20.952	54.3492	-165.3492
Unimak Pass A	70	54	19.782	165	24.432	54.3297	-165.4072
BD1	71	54	22.146	165	26.844	54.3691	-165.4474
BD4	72	54	35.334	165	39.174	54.5889	-165.6529
BG4	73	54	28.170	166	2.058	54.4695	-166.0343
BG1	74	54	14.982	165	49.770	54.2497	-165.8295
BJ1	75	54	7.824	166	12.624	54.1304	-166.2104
BJ4	76	54	21.012	166	24.882	54.3502	-166.4147
BM1	1	54	0.660	166	35.418	54.0110	-166.5903
Arrive Dutch Harbor, AK	0	53	54.498	166	30.900	53.9083	-166.5150

Cruise No: MF-02-06 FOCI No: 3MF02

9.3 Figures

Figure 1 – MF-02-06 Station Locations

