library(tidyverse) library(here) library(arrow) library(readxl) # Constants ---- genomicfeatures_PATH <- here("data/genome_files/hf/features") HUGHES_DATA_DIR <- here("data/hughes_2006") # Load genomic features harmonization table ---- # See https://huggingface.co/datasets/BrentLab/yeast_genome_resources genomicfeatures <- arrow::open_dataset(genomicfeatures_PATH) %>% as_tibble() #' Read and process Hughes normalized data #' #' @param path Path to Excel file #' @param ko Logical indicating if this is knockout data (TRUE) or overexpression (FALSE) #' @return Tibble with processed data read_hughes_normalized_data <- function(path, ko = TRUE) { if (!file.exists(path)) { stop("File not found: ", path) } df <- read_excel(path) # Standardize first column name colnames(df)[1] <- "hughes_target" # Pivot to long format df_long <- df %>% pivot_longer( cols = -hughes_target, names_to = "sample", values_to = "norm_log2fc" ) %>% mutate(norm_log2fc = as.numeric(norm_log2fc)) %>% # remove deleted ORFs filter(!hughes_target %in% c( "YCL006C", "YCR103C", "YER187W-A" )) %>% # these are transposons/retrotransposons and just have # typos mutate(hughes_target = case_when( hughes_target == "YDR034CD01" ~ "YDR034C-D", hughes_target == "YDR210WD01" ~ "YDR210W-D", hughes_target == "YDR261CD01" ~ "YDR261C-D", hughes_target == "YGR161CD01" ~ "YGR161C-D", hughes_target == "YPR158CD01" ~ "YPR158C-D", .default = hughes_target )) # Process based on data type if (ko) { df_long = df_long %>% separate(sample, into = c("prefix", "suffix"), sep = "/", remove = FALSE) %>% mutate( dye_orientation = str_extract(suffix, "[+-]$"), regulator_symbol = str_to_upper(str_remove(suffix, "[+-]")) ) %>% select(-prefix, -suffix) } else { df_long = df_long %>% mutate( dye_orientation = str_extract(sample, "[+-]$"), regulator_symbol = str_to_upper(str_remove(sample, "(-A)?OE[+-]")) ) } df_long %>% select(-sample) %>% pivot_wider(id_cols = c(regulator_symbol, hughes_target), names_from = dye_orientation, values_from = norm_log2fc) %>% rename(dye_plus = `+`, dye_minus = `-`) %>% rowwise() %>% mutate( mean_norm_log2fc = case_when( # Both values are NA is.na(dye_plus) & is.na(dye_minus) ~ NA_real_, # Only one value is available - use that value is.na(dye_plus) & !is.na(dye_minus) ~ dye_minus, !is.na(dye_plus) & is.na(dye_minus) ~ dye_plus, # Both values available but have opposite signs - average to zero !is.na(dye_plus) & !is.na(dye_minus) & (sign(dye_plus) != sign(dye_minus)) ~ 0, # Both values available with same sign - take the mean TRUE ~ mean(c(dye_plus, dye_minus), na.rm = TRUE) ) ) %>% ungroup() } # Load and process data ---- message("Loading knockout data...") df_ko <- read_hughes_normalized_data( file.path(HUGHES_DATA_DIR, "Del_NormalizedRatios.xls"), ko = TRUE ) message("Loading overexpression data...") df_oe <- read_hughes_normalized_data( file.path(HUGHES_DATA_DIR, "OE_NormalizedRatios.xls"), ko = FALSE ) message("Loading Z-scores...") zscore_df <- read_excel(file.path(HUGHES_DATA_DIR, "Z_SCORES_FOR_106_EXPERIMENTS.xls")) %>% rename(hughes_target = `...1`) %>% pivot_longer( cols = -hughes_target, names_to = "sample", values_to = "zscore" ) %>% mutate( perturbation = case_when( str_detect(sample, "-D$") ~ "deletion", str_detect(sample, "^OE") ~ "overexpression", TRUE ~ "unknown" ), hughes_regulator = str_to_upper(str_remove(sample, "-D$|^OE")) ) # Load metadata ---- message("Loading metadata...") hughes_2006_meta <- read_excel(file.path(HUGHES_DATA_DIR, "TRANSCRIPTION_FACTOR_LIST.xls")) %>% rename( regulator_locus_tag = Id_001, regulator_symbol = Id_002 ) %>% mutate( essential = `Essential/Nonessential` == "essential", oe_passed_qc = `OE passed QC` == "yes", del_passed_qc = `DEL passed QC` == "yes" ) %>% select(-`Essential/Nonessential`, -ends_with("passed QC")) # Data validation ---- message("Validating data consistency...") validate_data_consistency <- function() { tests <- list( # Check regulator locus tags match genomic features regulator_locus_consistency = setequal( intersect(genomicfeatures$locus_tag, hughes_2006_meta$regulator_locus_tag), hughes_2006_meta$regulator_locus_tag ), # Check regulator symbols match genomic features regulator_symbol_consistency = setequal( intersect(genomicfeatures$symbol, hughes_2006_meta$regulator_symbol), hughes_2006_meta$regulator_symbol ), # Check OE regulators match metadata oe_regulator_consistency = setequal( intersect(hughes_2006_meta$regulator_symbol, unique(df_oe$regulator_symbol)), unique(df_oe$regulator_symbol) ), # Check KO regulators match metadata ko_regulator_consistency = setequal( intersect(hughes_2006_meta$regulator_symbol, unique(df_ko$regulator_symbol)), unique(df_ko$regulator_symbol) ), # Check target consistency between KO and OE target_consistency = setequal( unique(df_ko$hughes_target), unique(df_oe$hughes_target) ), # Check targets match genomic features target_genomic_consistency = setequal( unique(df_oe$hughes_target), intersect(unique(df_oe$hughes_target), genomicfeatures$locus_tag) ) ) # Report results failed_tests <- names(tests)[!unlist(tests)] if (length(failed_tests) == 0) { message("✓ All validation tests passed") } else { stop("✗ Validation failed for: ", paste(failed_tests, collapse = ", ")) } invisible(tests) } validate_data_consistency() # Summary statistics ---- message("Data loading complete. Summary:") message("- Knockout experiments: ", length(unique(df_ko$regulator_symbol)), " regulators") message("- Overexpression experiments: ", length(unique(df_oe$regulator_symbol)), " regulators") message("- Target genes: ", length(unique(df_ko$hughes_target))) message("- Z-score experiments: ", length(unique(zscore_df$sample))) # Note about missing targets in Z-score data missing_targets_count <- length(setdiff(unique(df_ko$hughes_target), unique(zscore_df$hughes_target))) if (missing_targets_count > 0) { message("- Z-score data missing ", missing_targets_count, " targets present in KO/OE data") } missing_locus_tags <- setdiff( unique(df_oe$hughes_target), intersect(unique(df_oe$hughes_target), genomicfeatures$locus_tag) ) genome_map = tibble( locus_tag = intersect(unique(df_oe$hughes_target), genomicfeatures$locus_tag)) %>% left_join(genomicfeatures %>% select(locus_tag, symbol)) %>% mutate(hughes_target = locus_tag) %>% bind_rows( genomicfeatures %>% filter(str_detect(alias, paste(missing_locus_tags, collapse = "|"))) %>% mutate(alias_match = str_extract(alias, paste(missing_locus_tags, collapse = "|"))) %>% dplyr::rename(hughes_target = alias_match) %>% select(hughes_target, locus_tag, symbol) ) %>% dplyr::rename(target_locus_tag = locus_tag, target_symbol = symbol) stopifnot(setequal(genome_map$hughes_target, unique(df_oe$hughes_target))) df_oe_harmonized = df_oe %>% left_join( select(hughes_2006_meta, regulator_locus_tag, regulator_symbol)) %>% left_join(genome_map) %>% select(regulator_locus_tag, regulator_symbol, target_locus_tag, target_symbol, dye_plus, dye_minus, mean_norm_log2fc) df_oe_harmonized %>% write_parquet("~/code/hf/hughes_2006/overexpression.parquet", compression = "zstd", write_statistics = TRUE, use_dictionary = c( regulator_locus_tag = TRUE, regulator_symbol = TRUE, target_locus_tag = TRUE, target_symbol = TRUE ) ) df_ko_harmonized = df_ko %>% left_join( select(hughes_2006_meta, regulator_locus_tag, regulator_symbol)) %>% left_join(genome_map) %>% select(regulator_locus_tag, regulator_symbol, target_locus_tag, target_symbol, dye_plus, dye_minus, mean_norm_log2fc) df_ko_harmonized %>% write_parquet("~/code/hf/hughes_2006/knockout.parquet", compression = "zstd", write_statistics = TRUE, use_dictionary = c( regulator_locus_tag = TRUE, regulator_symbol = TRUE, target_locus_tag = TRUE, target_symbol = TRUE ) ) hughes_2006_meta %>% janitor::clean_names() %>% write_parquet("~/code/hf/hughes_2006/metadata.parquet", compression = "zstd", write_statistics = TRUE, use_dictionary = c( regulator_locus_tag = TRUE, regulator_symbol = TRUE, oe_passed_qc = TRUE, del_passed_qc = TRUE ) )