|
"""FrenchQA: One French QA Dataset to rule them all""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
One French QA Dataset to rule them all, One French QA Dataset to find them, One French QA Dataset to bring them all, and in the darkness bind them. |
|
""" |
|
|
|
_URLS = { |
|
"train": "train.csv", |
|
"dev": "valid.csv", |
|
"test": "test.csv" |
|
} |
|
|
|
|
|
class FrenchQAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for frenchQA.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for FrenchQA. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FrenchQAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class FrenchQA(datasets.GeneratorBasedBuilder): |
|
"""TODO(squad_v2): Short description of my dataset.""" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
FrenchQAConfig(name="frenchQA", version=datasets.Version("1.0.0"), description="frenchQA"), |
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
squad = csv.DictReader(f, delimiter = ";") |
|
for id_, row in enumerate(squad): |
|
answer_start = [] |
|
text = [] |
|
|
|
if row["answer_start"] != "-1": |
|
answer_start = [row["answer_start"]] |
|
text = [row["answer"]] |
|
|
|
yield id_, { |
|
"title": row["dataset"], |
|
"context": row["context"], |
|
"question": row["question"], |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_start, |
|
"text": text, |
|
}, |
|
} |