File size: 3,060 Bytes
9f7aeb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6381435
9f7aeb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
  - en
tags:
  - question-answering
  - cloze
  - text
  - knowledge-based
  - QA
license: cc-by-sa-4.0
task_categories:
  - question-answering
  - text-classification
---

# Cloze QA Dataset (WikiText-2)

## Dataset Description
The **Cloze QA Dataset** is automatically generated from the [WikiText-2](https://huggingface.co/datasets/mindchain/wikitext2) corpus. It contains **fill-in-the-blank (cloze) style questions** derived directly from sentences in Wikipedia articles. This dataset is particularly useful for evaluating **local recall, reading comprehension, and contextual understanding**.

Each document produces **exactly three unique QA pairs**, preserving document structure and sentence alignment while avoiding redundancy. QA pairs are stored in **JSONL format**, with each entry tied to a specific sentence.

---

## Dataset Structure

| Split      | Documents | QA Pairs | Description                                   |
|------------|-----------|----------|-----------------------------------------------|
| Train      | 5,135     | 15,405   | Used for model training and evaluation       |
| Validation | 502       | 1,506    | Used for hyperparameter tuning               |
| Test       | 569       | 1,707    | Used for final performance benchmarking      |

---

## Example Record

```json
{
  "doc_id": 0,
  "sent_id": 8,
  "title": "Robert Boulter",
  "question": "He appeared on a 2006 episode of the television series , ____ ,",
  "answer": "Doctors"
}

````

---

## File Structure

```
cloze_qa_dataset/
β”œβ”€β”€ train/
β”‚   └── qa.jsonl
β”œβ”€β”€ val/
β”‚   └── qa.jsonl
└── test/
    └── qa.jsonl
```

---

## Usage

This dataset is suitable for:

* Training QA models (extractive or generative)
* Benchmarking trivia-style QA tasks
* Knowledge-based reasoning research

---

## Source

Collected and curated by **WIDELab – Web Information & Data Engineering Laboratory, Department of Computer Science and Information Engineering, Chang Gung University, Taiwan**.
For more information, visit [CGU-Widelab](https://widelab.cgu.edu.tw/).

---

## License

Β© 2025 Chaithra Lokasara Mahadevaswamy et al., CGU-WIDELab.
Released under **CC BY-SA 4.0**, respecting Mistral AI and Hugging Face model terms.

---

## Citation

```
@misc{CGU-Widelab/Cloze_QA_Dataset_Wikitext2,
  title={Cloze_QA_Dataset_Wikitext2},
  author={WIDELab – Web Information & Data Engineering Laboratory, Chang Gung University},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/CGU-Widelab/Cloze_QA_Dataset_Wikitext2}},
  note={Accessed: 2025-10-25}
}

@inproceedings{chaithra2025optimizingrag,
  title={Optimizing Retrieval in RAG Systems with Reinforcement Learning: A Trade-off Between Quality and Cost},
  author={Mahadevaswamy, Chaithra Lokasara and Nguyen, Khoa and Singh, Mayank and Chang, Hsien-Tsung},
  booktitle={Proceedings of the 9th International Conference on Natural Language Processing and Information Retrieval (NLPIR 2025)},
  year={2025},
  address={Fukuoka, Japan}
}
```

```