""" create_cloze_qa_dataset.py ------------------------------------- Generate Cloze-style QA dataset from WikiText-2. Each sentence produces one 'fill-in-the-blank' question with a single correct answer. Output: JSONL files for train / validation / test. """ from datasets import load_dataset import re import json from pathlib import Path import random # Load WikiText-2 print("🔹 Loading WikiText-2 dataset ...") dataset = load_dataset("wikitext", "wikitext-2-raw-v1") # Output directories output_dir = Path("cloze_qa_dataset") output_dir.mkdir(exist_ok=True, parents=True) def create_cloze_question(sentence: str): """ Convert a sentence into a Cloze-style question by masking one entity/keyword. Returns (question, answer) or None if unsuitable. """ words = re.findall(r"\b[A-Z][a-zA-Z]+\b", sentence) # find capitalized words (possible entities) if not words: return None answer = random.choice(words) question = sentence.replace(answer, "____", 1) if question == sentence or len(answer) < 3: return None return question.strip(), answer.strip() def generate_qa_split(split_name, data): """ Generate QA pairs for each sentence in the given split. """ output_path = output_dir / f"{split_name}.jsonl" count = 0 with open(output_path, "w", encoding="utf-8") as f: for doc_id, text in enumerate(data["text"]): if not text.strip(): continue sentences = re.split(r'(?<=[.!?]) +', text.strip()) for sent_id, sent in enumerate(sentences): qa = create_cloze_question(sent) if qa: question, answer = qa record = { "doc_id": doc_id, "sent_id": sent_id, "title": None, "question": question, "answer": answer } f.write(json.dumps(record, ensure_ascii=False) + "\n") count += 1 print(f" Saved {count} QA pairs to {output_path}") # Generate datasets for split in ["train", "validation", "test"]: generate_qa_split(split, dataset[split]) print("\nAll splits processed and saved successfully")