import networkx as nx import os import pathlib import pickle DESCRIPTION = '''The Minimum Dominant Set (MDS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the smallest subset D ⊆ V such that every vertex in V is either in D or adjacent to at least one vertex in D.''' def solve(**kwargs): """ Solve the Minimum Dominant Set problem for a given test case. Input: kwargs (dict): A dictionary with the following keys: - graph (networkx.Graph): The graph to solve Returns: dict: A solution dictionary containing: - mds_nodes (list): List of node indices in the minimum dominant set """ # TODO: Implement your MDS solving algorithm here. Below is a placeholder. # Your function must yield multiple solutions over time, not just return one solution # Use Python's yield keyword repeatedly to produce a stream of solutions # Each yielded solution should be better than the previous one while True: yield { 'mds_nodes': [0, 1, ...], } def load_data(file_path): """ Load test data for an MDS instance (same API as before). Args: file_path (str or pathlib.Path): Path to the .gr file. Returns: list[dict]: [{'graph': nx.Graph}] """ file_path = pathlib.Path(file_path) if not file_path.exists(): raise FileNotFoundError(f"File not found: {file_path}") G = nx.Graph() edges = [] # collect edges, add in batch (fast) with file_path.open('r') as f: for line in f: if not line or line[0].isspace(): # skip blanks quickly continue if line[0] == 'p': # “p ds NODES EDGES” _, fmt, n_nodes, *_ = line.split() if fmt != 'ds': raise ValueError(f"Unexpected format: {fmt}") G.add_nodes_from(range(1, int(n_nodes) + 1)) continue # Otherwise it must be an edge line: "u v" u_str, v_str = line.split() edges.append((int(u_str), int(v_str))) G.add_edges_from(edges) # one shot edge insertion return [{'graph': G}] def eval_func(**kwargs): """ Evaluate a Minimum Dominant Set solution for correctness. Args: graph (networkx.Graph): The graph that was solved mds_nodes (list): List of nodes claimed to be in the minimum dominant set Returns: int: The size of the valid dominant set, or raises an exception if invalid """ graph = kwargs['graph'] mds_nodes = kwargs['mds_nodes'] # Check if mds_nodes is a list if not isinstance(mds_nodes, list): raise Exception("mds_nodes must be a list") # Check if all nodes in mds_nodes exist in the graph node_set = set(graph.nodes()) for node in mds_nodes: if node not in node_set: raise Exception(f"Node {node} in solution does not exist in graph") # Check for duplicates in mds_nodes if len(mds_nodes) != len(set(mds_nodes)): raise Exception("Duplicate nodes in solution") # Get the actual size actual_size = len(mds_nodes) # Most important: Check if it's a dominant set (every node is either in the set or adjacent to a node in the set) dominated_nodes = set(mds_nodes) # Nodes in the set # Add all neighbors of nodes in the set for node in mds_nodes: dominated_nodes.update(graph.neighbors(node)) # Check if all nodes are dominated if dominated_nodes != node_set: undominated = node_set - dominated_nodes raise Exception(f"Not a dominant set: nodes {undominated} are not dominated") return actual_size def norm_score(results): optimal_scores = {'easy_test_instances/exact_066.gr': [707.0], 'easy_test_instances/exact_088.gr': [707.0], 'easy_test_instances/exact_075.gr': [706.0], 'easy_test_instances/exact_093.gr': [706.0], 'easy_test_instances/exact_097.gr': [706.0], 'easy_test_instances/exact_081.gr': [1216.0], 'easy_test_instances/exact_057.gr': [705.0], 'easy_test_instances/exact_063.gr': [805.0], 'easy_test_instances/exact_072.gr': [805.0], 'easy_test_instances/exact_092.gr': [1183.0], 'easy_test_instances/exact_069.gr': [1171.0], 'easy_test_instances/exact_033.gr': [5539.0], 'easy_test_instances/exact_071.gr': [2689.0], 'easy_test_instances/exact_051.gr': [849.0], 'easy_test_instances/exact_067.gr': [989.0], 'easy_test_instances/exact_076.gr': [1597.0], 'easy_test_instances/exact_058.gr': [740.0], 'easy_test_instances/exact_056.gr': [1512.0], 'easy_test_instances/exact_083.gr': [1866.0], 'easy_test_instances/exact_034.gr': [5842.0], 'hard_test_instances/heuristic_049.gr': [3062.0], 'hard_test_instances/heuristic_065.gr': [3159.0], 'hard_test_instances/heuristic_016.gr': [3352.0], 'hard_test_instances/heuristic_042.gr': [2999.0], 'hard_test_instances/heuristic_017.gr': [3330.0], 'hard_test_instances/heuristic_019.gr': [3062.0], 'hard_test_instances/heuristic_036.gr': [3050.0], 'hard_test_instances/heuristic_067.gr': [3277.0], 'hard_test_instances/heuristic_097.gr': [3025.0], 'hard_test_instances/heuristic_015.gr': [3077.0], 'hard_test_instances/heuristic_059.gr': [2997.0], 'hard_test_instances/heuristic_037.gr': [3054.0], 'hard_test_instances/heuristic_026.gr': [3025.0], 'hard_test_instances/heuristic_060.gr': [3001.0], 'hard_test_instances/heuristic_078.gr': [2829.0], 'hard_test_instances/heuristic_044.gr': [2937.0], 'hard_test_instances/heuristic_003.gr': [637607.0], 'hard_test_instances/heuristic_066.gr': [1047.0], 'hard_test_instances/heuristic_074.gr': [331531.0], 'hard_test_instances/heuristic_077.gr': [427644.0], 'valid_instances/ba_graph_large_train_12.txt': [96.0], 'valid_instances/ba_graph_large_train_11.txt': [93.0], 'valid_instances/ba_graph_large_train_10.txt': [123.0], 'valid_instances/ba_graph_large_train_19.txt': [116.0], 'valid_instances/ba_graph_large_train_14.txt': [93.0], 'valid_instances/ba_graph_large_train_0.txt': [118.0], 'valid_instances/ba_graph_large_train_17.txt': [106.0], 'valid_instances/ba_graph_large_train_6.txt': [107.0], 'valid_instances/ba_graph_large_train_18.txt': [117.0], 'valid_instances/ba_graph_large_train_13.txt': [120.0], 'valid_instances/ba_graph_large_train_7.txt': [86.0], 'valid_instances/ba_graph_large_train_5.txt': [114.0], 'valid_instances/ba_graph_large_train_3.txt': [118.0], 'valid_instances/ba_graph_large_train_9.txt': [114.0], 'valid_instances/ba_graph_large_train_15.txt': [92.0], 'valid_instances/ba_graph_large_train_16.txt': [112.0], 'valid_instances/ba_graph_large_train_8.txt': [124.0], 'valid_instances/ba_graph_large_train_2.txt': [116.0], 'valid_instances/ba_graph_large_train_4.txt': [121.0], 'valid_instances/ba_graph_large_train_1.txt': [124.0]} # print(results) normed = {} for case, (scores, error_message) in results.items(): if case not in optimal_scores: continue # Skip if there's no optimal score defined. optimal_list = optimal_scores[case] normed_scores = [] # Compute normalized score for each index. for idx, score in enumerate(scores): if isinstance(score, (int, float)): normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx])) else: normed_scores.append(score) normed[case] = (normed_scores, error_message) return normed