---
license: apache-2.0
task_categories:
- other
tags:
- poi-recommendation
- trajectory-prediction
- human-mobility
dataset_info:
- config_name: default
features:
- name: user_id
dtype: string
- name: trail_id
dtype: string
- name: inputs
dtype: string
- name: targets
dtype: string
splits:
- name: train
num_bytes: 3338764
num_examples: 7103
- name: validation
num_bytes: 474953
num_examples: 1015
- name: test
num_bytes: 943365
num_examples: 2030
download_size: 1281735
dataset_size: 4757082
- config_name: tabular
features:
- name: trail_id
dtype: string
- name: user_id
dtype: int64
- name: venue_id
dtype: int64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: name
dtype: string
- name: address
dtype: string
- name: venue_category
dtype: string
- name: venue_category_id
dtype: string
- name: venue_category_id_code
dtype: int64
- name: venue_city
dtype: string
- name: venue_city_latitude
dtype: float64
- name: venue_city_longitude
dtype: float64
- name: venue_country
dtype: string
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 4084269
num_examples: 21027
- name: validation
num_bytes: 578645
num_examples: 2977
- name: test
num_bytes: 1144450
num_examples: 5896
download_size: 1785453
dataset_size: 5807364
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: tabular
data_files:
- split: train
path: tabular/train-*
- split: validation
path: tabular/validation-*
- split: test
path: tabular/test-*
---
# Massive-STEPS-Sydney
[](https://huggingface.co/collections/CRUISEResearchGroup/massive-steps-point-of-interest-check-in-dataset-682716f625d74c2569bc7a73)
[](https://huggingface.co/papers/2505.11239)
[](https://arxiv.org/abs/2505.11239)
[](https://github.com/cruiseresearchgroup/Massive-STEPS)
## Dataset Summary
**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 12 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
| **City** | **URL** |
| --------------- | :---------------------------------------------------------------------: |
| Beijing 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) |
| Istanbul 🇹🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) |
| Jakarta 🇮🇩 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) |
| Kuwait City 🇰🇼 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Kuwait-City/) |
| Melbourne 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) |
| Moscow 🇷🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) |
| New York 🇺🇸 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) |
| Petaling Jaya 🇲🇾 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
| São Paulo 🇧🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) |
| Shanghai 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) |
| Sydney 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) |
| Tokyo 🇯🇵 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) |
### Dataset Sources
The dataset is derived from two sources:
1. **Semantic Trails Dataset**:
- Repository: [D2KLab/semantic-trails](https://github.com/D2KLab/semantic-trails)
- Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. *arXiv preprint [arXiv:1812.04367](https://arxiv.org/abs/1812.04367)*.
2. **Foursquare Open Source Places**:
- Repository: [foursquare/fsq-os-places](https://huggingface.co/datasets/foursquare/fsq-os-places)
- Documentation: [Foursquare Open Source Places](https://docs.foursquare.com/data-products/docs/access-fsq-os-places)
## Dataset Structure
```shell
.
├── sydney_checkins_test.csv # test set check-ins
├── sydney_checkins_train.csv # train set check-ins
├── sydney_checkins_validation.csv # validation set check-ins
├── sydney_checkins.csv # all check-ins
├── data # trajectory prompts
│  ├── test-00000-of-00001.parquet
│  ├── train-00000-of-00001.parquet
│  └── validation-00000-of-00001.parquet
└── README.md
```
### Data Instances
An example of entries in `sydney_checkins.csv`:
```csv
trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp
2013_1140,26,3353,-33.88408179250253,151.2067973613739,Platforms 16 & 17,Central Station,Platform,4f4531504b9074f6e4fb0102,336,Haymarket,-33.87868,151.20526,AU,2012-04-19 00:05:00
2013_1140,26,4812,-33.79804527395917,151.1809942132529,Platform 2,Railway St,Train Station,4bf58dd8d48988d129951735,73,Chatswood,-33.8,151.18333,AU,2012-04-19 06:28:00
2013_1141,26,3862,,,,,Home (private),4bf58dd8d48988d103941735,6,Sydney,-33.86785,151.20732,AU,2012-05-13 03:31:00
2013_1141,26,266,-33.87521272869442,151.20667290492102,eVent Cinemas,505-525 George St,Multiplex,4bf58dd8d48988d180941735,151,Haymarket,-33.87868,151.20526,AU,2012-05-13 05:06:00
2013_1142,26,901,-33.92147853346653,151.2268477675372,Kingsford Chinese Restaurant,426 Anzac Pde,Chinese Restaurant,4bf58dd8d48988d145941735,99,Kingsford,-33.92399,151.22749,AU,2012-06-03 03:59:00
```
### Data Fields
| **Field** | **Description** |
| ------------------------ | ---------------------------------- |
| `trail_id` | Numeric identifier of trail |
| `user_id` | Numeric identifier of user |
| `venue_id` | Numeric identifier of POI venue |
| `latitude` | Latitude of POI venue |
| `longitude` | Longitude of POI venue |
| `name` | POI/business name |
| `address` | Street address of POI venue |
| `venue_category` | POI category name |
| `venue_category_id` | Foursquare Category ID |
| `venue_category_id_code` | Numeric identifier of category |
| `venue_city` | Administrative region name |
| `venue_city_latitude` | Latitude of administrative region |
| `venue_city_longitude` | Longitude of administrative region |
| `venue_country` | Country code |
| `timestamp` | Check-in timestamp |
### Dataset Statistics
| City | Users | Trails | POIs | Check-ins | #train | #val | #test |
| ----------- | :----: | :-----: | :---: | :-------: | :----: | :---: | :---: |
| Sydney 🇦🇺 | 740 | 10,148 | 8,986 | 29,900 | 7,103 | 1,015 | 2,030 |
## Additional Information
### License
```
Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
```
## 🔖 Citation
If you find this repository useful for your research, please consider citing our paper:
```bibtex
@misc{wongso2025massivestepsmassivesemantictrajectories,
title = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks},
author = {Wilson Wongso and Hao Xue and Flora D. Salim},
year = {2025},
eprint = {2505.11239},
archiveprefix = {arXiv},
primaryclass = {cs.LG},
url = {https://arxiv.org/abs/2505.11239}
}
```
### Contact
If you have any questions or suggestions, feel free to contact Wilson at `w.wongso(at)unsw(dot)edu(dot)au`.