import os import random from datasets import load_dataset def whitespace_tokenize_with_offsets(text): tokens = [] start_tok_offsets = [] end_tok_offsets = [] current_token = "" current_token_start = None for i, char in enumerate(text): if char.isspace(): if current_token: tokens.append(current_token) start_tok_offsets.append(current_token_start) end_tok_offsets.append(i) current_token = "" current_token_start = None else: if current_token == "": current_token_start = i current_token += char # Add the last token if there is one if current_token: tokens.append(current_token) start_tok_offsets.append(current_token_start) end_tok_offsets.append(len(text)) return tokens, start_tok_offsets, end_tok_offsets def proc_dataset(dataset, max_text_length=200): r = [] for doc in dataset: text = doc["text"] covered_entities = set() for ent_id, entity in enumerate(doc["entities"]): if ent_id in covered_entities: continue target_text = text if len(text) > max_text_length: tokens, start_tok_offsets, end_tok_offsets = whitespace_tokenize_with_offsets(text) entity_start = entity["start"] entity_end = entity["end"] # Find the token indices that correspond to the entity entity_start_idx = None entity_end_idx = None for idx, (start, end) in enumerate(zip(start_tok_offsets, end_tok_offsets)): if start <= entity_start < end: entity_start_idx = idx if start < entity_end <= end: entity_end_idx = idx break if entity_start_idx is None or entity_end_idx is None: continue allowed_tokens = max_text_length - len(tokens[entity_start_idx:entity_end_idx + 1]) - 20 before_tokens = random.randint(0, int(allowed_tokens * 0.8)) after_tokens = allowed_tokens - before_tokens # Determine the start and end indices for the new text segment if entity_start_idx - before_tokens < 0: after_tokens += - (entity_start_idx - before_tokens) elif entity_end_idx + after_tokens + 1 >= len(tokens): before_tokens += entity_end_idx + after_tokens + 1 - len(tokens) start_idx = max(0, entity_start_idx - before_tokens) end_idx = min(len(tokens), entity_end_idx + after_tokens + 1) # Ensure the first 20 tokens are included if possible initial_text = "" if start_idx > 20: initial_text = text[:end_tok_offsets[20]] + "... " # Use offsets to extract the original text start_offset = start_tok_offsets[start_idx] end_offset = end_tok_offsets[end_idx - 1] target_text = initial_text + text[start_offset:end_offset] # if target text contains more entities of the same type, add them to the answers and covered entities this_answer_entities = [ent_id] answers = [entity["content"]] for ent_id2, entity2 in enumerate(doc["entities"]): if ent_id2 == ent_id: continue # check type if entity2["category_str"] == entity["category_str"]: # just check the string in the target text # check if the entity is in the target text if entity2["content"] in target_text: this_answer_entities.append(ent_id2) answers.append(entity2["content"]) covered_entities.update(this_answer_entities) r.append({ "label": entity["category_str"], "answers": list(set(answers)), "text": target_text, }) return r d = load_dataset("fewshot-goes-multilingual/cs_czech-named-entity-corpus_2.0") train = list(d['train']) random.shuffle(train) new_dataset_train = proc_dataset(train[3000:]) dataset_test_ftrain = proc_dataset(train[:3000]) dataset_val = proc_dataset(d['validation']) dataset_test = proc_dataset(d['test']) # merge splits new_dataset_test = dataset_test_ftrain + dataset_val + dataset_test random.shuffle(new_dataset_test) # save using jsonlines in .data/hf_datasets/ner_court_decisions os.makedirs(".data/hf_dataset/czner_2.0", exist_ok=True) import jsonlines # print dataset lengths print("train", len(new_dataset_train)) print("test", len(new_dataset_test)) with jsonlines.open(".data/hf_dataset/czner_2.0/train.jsonl", "w") as f: f.write_all(new_dataset_train) with jsonlines.open(".data/hf_dataset/czner_2.0/test.jsonl", "w") as f: f.write_all(new_dataset_test)