File size: 9,370 Bytes
9c3d989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c8768
 
 
 
 
 
 
 
9c3d989
1681ba5
9c3d989
 
 
 
 
 
 
 
 
3df24ef
 
 
 
9c3d989
 
 
 
 
 
f4c8768
3406821
9c3d989
 
 
f4c8768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406821
f4c8768
3406821
f4c8768
3406821
f4c8768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406821
f4c8768
 
 
e073f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
---
task_categories:
- question-answering
- visual-question-answering
language:
- en
tags:
- Multimodal Search
size_categories:
- n<1K
configs:
- config_name: end2end
  data_files:
  - split: end2end
    path: "end2end.parquet"
- config_name: rerank
  data_files:
    - split: rerank
      path: "rerank.parquet"
- config_name: summarization
  data_files:
    - split: summarization
      path: "summarization.parquet"
dataset_info:
  - config_name: end2end
    features:
      - name: sample_id
        dtype: string
      - name: query
        dtype: string
      - name: query_image
        dtype: image
      - name: image_search_result
        dtype: image
      - name: area
        dtype: string
      - name: subfield
        dtype: string
      - name: timestamp
        dtype: string
      - name: gt_requery
        dtype: string
      - name: gt_answer
        dtype: string
      - name: alternative_gt_answers
        dtype: array
    splits:
      - name: end2end
        num_examples: 300
  - config_name: rerank
    features:
      - name: sample_id
        dtype: string
      - name: query
        dtype: string
      - name: query_image
        dtype: image
      - name: image_search_result
        dtype: image
      - name: area
        dtype: string
      - name: subfield
        dtype: string
      - name: timestamp
        dtype: string
      - name: valid
        dtype: array
      - name: not_sure
        dtype: array
      - name: invalid
        dtype: array
      - name: gt_answer
        dtype: string
      - name: website0_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website1_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website2_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website3_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website4_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website5_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website6_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website7_info
        struct:
          - name: title
            dtype: string
          - name: snippet
            dtype: string
          - name: url
            dtype: string
      - name: website0_head_screenshot
        dtype: image
      - name: website1_head_screenshot
        dtype: image
      - name: website2_head_screenshot
        dtype: image
      - name: website3_head_screenshot
        dtype: image
      - name: website4_head_screenshot
        dtype: image
      - name: website5_head_screenshot
        dtype: image
      - name: website6_head_screenshot
        dtype: image
      - name: website7_head_screenshot
        dtype: image
    splits:
      - name: rerank
        num_examples: 300
  - config_name: summarization
    features:
      - name: sample_id
        dtype: string
      - name: query
        dtype: string
      - name: query_image
        dtype: image
      - name: image_search_result
        dtype: image
      - name: area
        dtype: string
      - name: subfield
        dtype: string
      - name: timestamp
        dtype: string
      - name: website_title
        dtype: string
      - name: website_snippet
        dtype: string
      - name: website_url
        dtype: string
      - name: website_original_content
        dtype: string
      - name: website_retrieved_content
        dtype: string
      - name: website_fullpage_screenshot
        dtype: image
      - name: gt_requery
        dtype: string
      - name: gt_answer
        dtype: string
      - name: alternative_gt_answers
        dtype: array
    splits:
      - name: summarization
        num_examples: 300
---
# MMSearch πŸ”₯: Benchmarking the Potential of Large Models as Multi-modal Search Engines

Official repository for the paper "[MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines]()".

🌟 For more details, please refer to the project page with dataset exploration and visualization tools: [https://mmsearch.github.io/](https://mmsearch.github.io).


[[🌐 Webpage](https://mmsearch.github.io/)] [[πŸ“– Paper]()] [[πŸ€— Huggingface Dataset](https://huggingface.co/datasets/CaraJ/MMSearch)] [[πŸ† Leaderboard](https://mmsearch.github.io/#leaderboard)] [[πŸ” Visualization](https://huggingface.co/datasets/CaraJ/MMSearch/viewer)]


## πŸ’₯ News

- **[2024.09.20]** πŸš€ We release the [arXiv paper]() and some data samples in the [visualizer](https://huggingface.co/datasets/CaraJ/MMSearch/viewer).

## πŸ“Œ ToDo

- Coming soon: *Evaluation codes*

## πŸ‘€ About MMSearch

The capabilities of **Large Multi-modal Models (LMMs)** in **multimodal search** remain insufficiently explored and evaluated. To fill the blank of a framework for LMM to conduct multimodal AI search engine, we first design a delicate pipeline **MMSearch-Engine** to facilitate **any LMM** to function as a multimodal AI search engine

<p align="center">
    <img src="https://github.com/CaraJ7/MMSearch/raw/main/figs/fig1.png" width="75%"> <br>
    The overview of <b>MMSearch-Engine</b>.
</p>

To further evaluate the potential of LMMs in the multimodal search domain, we introduce **MMSearch**, an all-around multimodal search benchmark designed for assessing the multimodal search performance. The benchmark contains 300 manually collected instances spanning 14 subfields, which involves no overlap with the current LMMs' training data, ensuring the correct answer can only be obtained within searching.

<p align="center">
    <img src="https://raw.githubusercontent.com/CaraJ7/MMSearch/main/figs/fig2.png" width="60%"> <br>
    The overview of <b>MMSearch</b>.
</p>

In addition, we propose a **step-wise evaluation strategy** to better understand the LMMs' searching capability. The models are evaluated by performing **three individual tasks (requery, rerank, and summarization)**, and **one challenging end-to-end task** with a complete searching process. The final score is weighted by the four tasks.

<p align="center">
    <img src="https://raw.githubusercontent.com/CaraJ7/MMSearch/main/figs/fig3.png" width="90%"> <br>
    Outline of Evaluation Tasks, Inputs, and Outputs.
</p>

An example of LMM input, output, and ground truth for four evaluation tasks is shown [here](figs/fig4.png).

## πŸ† Leaderboard

### Contributing to the Leaderboard

🚨 The [Leaderboard](https://mmsearch.github.io/#leaderboard) is continuously being updated, welcoming the contribution of your excellent LMMs!


## :white_check_mark: Citation

If you find **MMSearch** useful for your research and applications, please kindly cite using this BibTeX:

```latex
@article{jiang2024mmsearch,
  title={MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines},
  author={Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanmin Wu, Jiayi Lei, Pengshuo Qiu, Pan Lu, Zehui Chen, Guanglu Song, Peng Gao, Yu Liu, Chunyuan Li, Hongsheng Li},
  booktitle={arXiv},
  year={2024}
}
```

## 🧠 Related Work

Explore our additional research on **Vision-Language Large Models**:

- **[MathVerse]** [MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?](https://mathverse-cuhk.github.io/)
- **[MathVista]** [MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts](https://github.com/lupantech/MathVista)
- **[LLaMA-Adapter]** [LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention](https://github.com/OpenGVLab/LLaMA-Adapter)
- **[LLaMA-Adapter V2]** [LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model](https://github.com/OpenGVLab/LLaMA-Adapter)
- **[ImageBind-LLM]** [Imagebind-LLM: Multi-modality Instruction Tuning](https://github.com/OpenGVLab/LLaMA-Adapter/tree/main/imagebind_LLM)
- **[SPHINX]** [The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal LLMs](https://github.com/Alpha-VLLM/LLaMA2-Accessory/tree/main/SPHINX)
- **[SPHINX-X]** [Scaling Data and Parameters for a Family of Multi-modal Large Language Models](https://github.com/Alpha-VLLM/LLaMA2-Accessory/tree/main/SPHINX)
- **[Point-Bind & Point-LLM]** [Multi-modality 3D Understanding, Generation, and Instruction Following](https://github.com/ZiyuGuo99/Point-Bind_Point-LLM)
- **[PerSAM]** [Personalize segment anything model with one shot](https://github.com/ZrrSkywalker/Personalize-SAM)
- **[CoMat]** [CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching](https://caraj7.github.io/comat/)