ChristianHugD commited on
Commit
1f4ffa2
·
verified ·
1 Parent(s): b332089

Upload initial dataset files from '/home/christian/Desktop/Uni/Bachelor-Thesis/datasets/ctb'

Browse files
README.md CHANGED
@@ -2,204 +2,71 @@
2
  language:
3
  - en
4
  license: mit
5
- pretty_name: ctb
6
  task_categories:
7
  - text-classification
8
  - token-classification
9
  configs:
10
- - config_name: sequence-classification
11
  description: Data prepared for identifying the presence of a causal relation in a text.
12
  data_files:
13
  - split: train
14
- path: sequence-classification/train.parquet
15
  - split: test
16
- path: sequence-classification/test.parquet
17
  features:
18
- - name: text
19
  dtype: string
20
- - name: label
21
- dtype: int64
22
- task_templates:
23
- - task: text-classification
24
- text_column: text
25
- label_column: label
26
- labels:
27
- - negative_causal_relation
28
- - positive_causal_relation
29
-
30
- - config_name: pair-classification
31
- description: Data prepared for classifying if two sequences have a causal relationship.
32
- data_files:
33
- - split: train
34
- path: pair-classification/train.parquet
35
- - split: test
36
- path: pair-classification/test.parquet
37
- features:
38
  - name: text
39
  dtype: string
40
  - name: label
41
- dtype: int64
42
- task_templates:
43
- - task: text-classification
44
- text_column: text
45
- label_column: label
46
- labels:
47
- - negative_causal_relation
48
- - positive_causal_relation
49
 
50
- - config_name: token-classification
51
  description: Data prepared for span detection of Cause and Effect entities within text.
52
  data_files:
53
  - split: train
54
- path: token-classification/train.parquet
55
  - split: test
56
- path: token-classification/test.parquet
57
  features:
 
 
58
  - name: tokens
59
  dtype:
60
  sequence: string
61
  - name: labels
62
  dtype:
63
- sequence: int64
64
- task_templates:
65
- - task: token-classification
66
- text_column: tokens
67
- label_column: labels
68
- labels:
69
- - O
70
- - B-Cause
71
- - I-Cause
72
- - B-Effect
73
- - I-Effect
74
- ---
75
-
76
- ## Table of Contents
77
-
78
- - [Dataset Description](#dataset-description)
79
- - [Dataset Summary](#dataset-summary)
80
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
81
- - [Languages](#languages)
82
- - [Dataset Structure](#dataset-structure)
83
- - [Data Instances](#data-instances)
84
- - [Data Fields](#data-fields)
85
- - [Data Splits](#data-splits)
86
- - [Dataset Creation](#dataset-creation)
87
- - [Curation Rationale](#curation-rationale)
88
- - [Source Data](#source-data)
89
- - [Annotations](#annotations)
90
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
91
- - [Considerations for Using the Data](#considerations-for-using-the-data)
92
- - [Social Impact of Dataset](#social-impact-of-dataset)
93
- - [Limitations and Biases](#limitations-and-biases)
94
- - [Additional Information](#additional-information)
95
- - [Dataset Curators](#dataset-curators)
96
- - [Licensing Information](#licensing-information)
97
- - [Citation Information](#citation-information)
98
- - [Contributions](#contributions)
99
-
100
- ---
101
-
102
- ## Dataset Description
103
-
104
- ### Dataset Summary
105
-
106
- This dataset is derived from the SemEval-2010 Task 8: **"Identifying the Cause-Effect Relation in Text"**. It focuses on identifying and classifying causal relationships between entities in sentences. The original task aimed to promote research in relation extraction, specifically focusing on the detection and classification of semantic relations between pairs of nominals.
107
-
108
- This particular version provides the data in a ready-to-use CSV format with three configurations tailored for common NLP tasks:
109
-
110
- - **`sequence-classification`**: For classifying the presence of a causal relation at the sentence level.
111
- - **`pair-classification`**: For classifying the causal relationship between specific entity pairs within text (potentially using text with marked pairs).
112
- - **`token-classification`**: For detecting and labeling "Cause" and "Effect" entities as spans within text (e.g., using IOB format).
113
-
114
- ### Supported Tasks and Leaderboards
115
-
116
- This dataset can be used to train and evaluate models for:
117
-
118
- - **Text Classification**: For determining if a sentence expresses a causal relationship (`sequence-classification` config).
119
- - **Relation Extraction / Text Classification**: For classifying the type of relationship between two marked nominals (`pair-classification` config).
120
- - **Named Entity Recognition (NER) / Token Classification**: For identifying and tagging cause and effect entities within sentences (`token-classification` config).
121
-
122
- Given its origin, it's suitable for benchmarking performance on relation extraction tasks. You might find relevant leaderboards on the original SemEval-2010 Task 8 website or other platforms dedicated to relation extraction.
123
-
124
- ### Languages
125
-
126
- The dataset is entirely in **English (en)**.
127
-
128
  ---
129
-
130
- ## Dataset Structure
131
-
132
- ### Data Instances
133
-
134
- Each instance in the dataset typically represents a sentence or a segment of text with associated labels. For the `token-classification` setup, sentences are tokenized.
135
-
136
- Here's an example for the `token-classification` config:
137
-
138
- ## Configurations Overview
139
-
140
- This dataset offers the following configurations, each tailored for a specific causal extraction task. You select the desired configuration when loading the dataset using `load_dataset()`. All configurations share the same underlying data files (`train.csv`, `validation.csv`, `test.csv`), but interpret specific columns for their respective tasks.
141
-
142
- ### 1. `sequence-classification` Config
143
-
144
- This configuration provides text and a binary label indicating whether a causal relation is present in the text. It is designed for **sequence classification** tasks.
145
-
146
- #### Key Columns
147
-
148
- - `text`: `string` - The input text, representing the document or sentence to be classified. This serves as the **input feature** for models.
149
- - `seq_label`: `int` - The binary label indicating the presence (`1`) or absence (`0`) of a causal relation. This is the **target label** for classification.
150
- - `0`: `negative_causal_relation` (No causal relation detected)
151
- - `1`: `positive_causal_relation` (A causal relation is present)
152
-
153
- #### Data Instance Example
154
-
155
- ```json
156
- {
157
- "text": "We have gotten the agreement of the Chairman and the Secretary, preliminary to any opening statements, to stay until 1 p.m. We will probably have some votes, so we will maximize our time.",
158
- "seq_label": 1
159
- }
160
- ```
161
-
162
- ### 2. `pair-classification` Config
163
-
164
- This configuration focuses on classifying the causal relationship between two pre-defined text spans within a larger text. It is designed for **pair-classification** tasks where the input often highlights the potential cause and effect arguments.
165
-
166
- #### Key Columns
167
-
168
- - `text_w_pairs`: `string` - The text where the potential causal arguments are explicitly marked (e.g., using special tags like `<ARG0>` and `<ARG1>`). This is the **input feature** for models.
169
- - `pair_label`: `int` - The binary label indicating whether the relationship between the marked pair is causal (`1`) or not (`0`). This is the **target label** for classification.
170
- - `0`: `negative_causal_relation` (No causal relation between the pair)
171
- - `1`: `positive_causal_relation` (A causal relation exists between the pair)
172
-
173
- #### Data Instance Example
174
-
175
- ```json
176
- {
177
- "text_w_pairs": "We have gotten the agreement of the Chairman and the Secretary, preliminary to any opening statements, to stay until 1 p.m. <ARG0>We will probably have some votes</ARG0>, so <ARG1>we will maximize our time</ARG1>.",
178
- "pair_label": 1
179
- }
180
- ```
181
-
182
- ### 3. `token-classification` Config
183
-
184
- This configuration provides pre-tokenized text and corresponding token-level labels (BIO tags) that mark the spans of Causes and Effects. It is suitable for **token classification** (span detection) tasks.
185
-
186
- #### Key Columns
187
-
188
- - `text`: `string` - The original raw text (provided for context).
189
- - `tokens`: `list[str]` - The pre-tokenized version of the `text`. This is the **input feature** for models.
190
- - `labels`: `list[int]` - A list of integer IDs, where each ID corresponds to a BIO tag for the respective token in the `tokens` list. This is the **target label** for span detection.
191
- - `0`: `O` (Outside of any annotated causal-span)
192
- - `1`: `B-Cause` (Beginning of a Cause span)
193
- - `2`: `I-Cause` (Inside a Cause span)
194
- - `3`: `B-Effect` (Beginning of an Effect span)
195
- - `4`: `I-Effect` (Inside an Effect span)
196
-
197
- #### Data Instance Example
198
-
199
- ```json
200
- {
201
- "text": "The heavy rain caused flooding in the streets.",
202
- "tokens": ["The", "heavy", "rain", "caused", "flooding", "in", "the", "streets", "."],
203
- "labels": [0, 1, 2, 0, 3, 4, 4, 4, 0] # Example BIO tags for Cause "heavy rain" and Effect "flooding in the streets"
204
- }
205
- ```
 
2
  language:
3
  - en
4
  license: mit
5
+ pretty_name: altlex
6
  task_categories:
7
  - text-classification
8
  - token-classification
9
  configs:
10
+ - config_name: causality detection
11
  description: Data prepared for identifying the presence of a causal relation in a text.
12
  data_files:
13
  - split: train
14
+ path: causality-detection/train.parquet
15
  - split: test
16
+ path: causality-detection/test.parquet
17
  features:
18
+ - name: index
19
  dtype: string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  - name: text
21
  dtype: string
22
  - name: label
23
+ dtype:
24
+ class_label:
25
+ names:
26
+ '0': uncausal
27
+ '1': causal
 
 
 
28
 
29
+ - config_name: causal candidate extraction
30
  description: Data prepared for span detection of Cause and Effect entities within text.
31
  data_files:
32
  - split: train
33
+ path: causal-candidate-extraction/train.parquet
34
  - split: test
35
+ path: causal-candidate-extraction/test.parquet
36
  features:
37
+ - name: index
38
+ dtype: string
39
  - name: tokens
40
  dtype:
41
  sequence: string
42
  - name: labels
43
  dtype:
44
+ sequence:
45
+ dtype:
46
+ class_label:
47
+ names:
48
+ '0': outside
49
+ '1': B-Cause
50
+ '2': I-Cause
51
+ '3': B-Effect
52
+ '4': I-Effect
53
+
54
+ - config_name: causality identification
55
+ description: Data prepared for classifying if two sequences have a causal relationship.
56
+ data_files:
57
+ - split: train
58
+ path: causality-identification/train.parquet
59
+ - split: test
60
+ path: causality-identification/test.parquet
61
+ features:
62
+ - name: index
63
+ dtype: string
64
+ - name: text
65
+ dtype: string
66
+ - name: label
67
+ dtype:
68
+ class_label:
69
+ names:
70
+ '0': uncausal
71
+ '1': causal
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-candidate-extraction/test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c0c19b6e7eb35e085168e9a6b00b98adf83e4625422dd88539818a28d5f2e26
3
+ size 35528
causal-candidate-extraction/train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5079043a7b123bdfccbfb405bbac8920f246924b1e72d22758114d1940efff30
3
+ size 181268
causality-detection/test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b47a3f7da1f8157f81400f8518adcd5ca37cd122e6e239b62ed374358cbbc9fe
3
+ size 30042
causality-detection/train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7a6f512752a1c4aa6b87fa34ffc881c0508edb8a7ab84585e74b9f7fecdd4cb
3
+ size 172874
causality-identification/test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8967db8c26d8842c5c46172185a6a1856fc218e3fe873e16cfa10f7dd8572f6
3
+ size 42808
causality-identification/train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94077882d8a512cd70caa36aa4d92944f7fb2268a3643557f507119a539adcb5
3
+ size 262742
test.csv ADDED
The diff for this file is too large to render. See raw diff
 
train.csv ADDED
The diff for this file is too large to render. See raw diff