Datasets:
Improve dataset card: Add task category, tags, paper, and code links (#2)
Browse files- Improve dataset card: Add task category, tags, paper, and code links (86d5a5f03318cb9928c0e30ff7f85a18f9b320e3)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,12 +1,24 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
# StreakNet-Dataset
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|Distance|Number of streak-tube images|Resolution of streak-tube images|Data type|Training set|Validation set|Test set|
|
| 12 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
|
@@ -54,7 +66,6 @@ datasets
|
|
| 54 |
| |- data # Original streak images
|
| 55 |
| | |- 001.tif
|
| 56 |
| | |- 002.tif
|
| 57 |
-
| | |- 003.tif
|
| 58 |
| | |- ...
|
| 59 |
| |
|
| 60 |
| |- groundtruth.npy # The ground-truth of the final imaged image
|
|
@@ -67,4 +78,4 @@ datasets
|
|
| 67 |
|- test_config.yaml # The config file of test-set
|
| 68 |
|- train_config.yaml # The config file of training-set
|
| 69 |
|- valid_config.yaml # The config file of validation-set
|
| 70 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-to-3d
|
| 5 |
+
tags:
|
| 6 |
+
- underwater-laser-imaging
|
| 7 |
+
- 3d-point-cloud
|
| 8 |
+
- lidar
|
| 9 |
+
- streak-tube-camera
|
| 10 |
---
|
| 11 |
|
| 12 |
# StreakNet-Dataset
|
| 13 |
|
| 14 |
+
<div align="center"><img src="https://github.com/BestAnHongjun/StreakNet/blob/main/assets/streaknet_logo.png?raw=true" width="400"></div><br>
|
| 15 |
+
<div align="center"><img src="https://github.com/BestAnHongjun/StreakNet/blob/main/assets/overview.jpg?raw=true"></div>
|
| 16 |
+
|
| 17 |
+
**StreakNet-Dataset** is an underwater laser imaging dataset for **UCLR** systems, introduced in the paper [StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging](https://huggingface.co/papers/2404.09158). It comprises a collection of streak-tube images captured by a **UCLR** system at distances of 10m, 13m, 15m, and 20m, contributing 2,695,168 real-world underwater 3D point cloud data.
|
| 18 |
+
|
| 19 |
+
For the associated source code, models, and comprehensive usage instructions, please refer to the [GitHub repository](https://github.com/BestAnHongjun/StreakNet).
|
| 20 |
+
|
| 21 |
+
See the table below to learn more details of the dataset.
|
| 22 |
|
| 23 |
|Distance|Number of streak-tube images|Resolution of streak-tube images|Data type|Training set|Validation set|Test set|
|
| 24 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
|
|
|
| 66 |
| |- data # Original streak images
|
| 67 |
| | |- 001.tif
|
| 68 |
| | |- 002.tif
|
|
|
|
| 69 |
| | |- ...
|
| 70 |
| |
|
| 71 |
| |- groundtruth.npy # The ground-truth of the final imaged image
|
|
|
|
| 78 |
|- test_config.yaml # The config file of test-set
|
| 79 |
|- train_config.yaml # The config file of training-set
|
| 80 |
|- valid_config.yaml # The config file of validation-set
|
| 81 |
+
```
|