--- license: cc-by-4.0 task_categories: - automatic-speech-recognition - text-to-speech language: - tr tags: - speech - audio - dataset - tts - asr - merged-dataset size_categories: - n<1K configs: - config_name: default data_files: - split: train path: "data.jsonl" default: true dataset_info: features: - name: audio dtype: audio: sampling_rate: null - name: text dtype: string - name: speaker_id dtype: string - name: emotion dtype: string - name: language dtype: string splits: - name: train num_examples: 491 config_name: default --- # test324234 This is a merged speech dataset containing 491 audio segments from 2 source datasets. ## Dataset Information - **Total Segments**: 491 - **Speakers**: 2 - **Languages**: tr - **Emotions**: angry, neutral, happy - **Original Datasets**: 2 ## Dataset Structure Each example contains: - `audio`: Audio file (WAV format, original sampling rate preserved) - `text`: Transcription of the audio - `speaker_id`: Unique speaker identifier (made unique across all merged datasets) - `emotion`: Detected emotion (neutral, happy, sad, etc.) - `language`: Language code (en, es, fr, etc.) ## Usage ### Loading the Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("Codyfederer/test324234") # Access the training split train_data = dataset["train"] # Example: Get first sample sample = train_data[0] print(f"Text: {sample['text']}") print(f"Speaker: {sample['speaker_id']}") print(f"Language: {sample['language']}") print(f"Emotion: {sample['emotion']}") # Play audio (requires audio libraries) # sample['audio']['array'] contains the audio data # sample['audio']['sampling_rate'] contains the sampling rate ``` ### Alternative: Load from JSONL ```python from datasets import Dataset, Audio, Features, Value import json # Load the JSONL file rows = [] with open("data.jsonl", "r", encoding="utf-8") as f: for line in f: rows.append(json.loads(line)) features = Features({ "audio": Audio(sampling_rate=None), "text": Value("string"), "speaker_id": Value("string"), "emotion": Value("string"), "language": Value("string") }) dataset = Dataset.from_list(rows, features=features) ``` ### Dataset Structure The dataset includes: - `data.jsonl` - Main dataset file with all columns (JSON Lines) - `*.wav` - Audio files under `audio_XXX/` subdirectories - `load_dataset.txt` - Python script for loading the dataset (rename to .py to use) JSONL keys: - `audio`: Relative audio path (e.g., `audio_000/segment_000000_speaker_0.wav`) - `text`: Transcription of the audio - `speaker_id`: Unique speaker identifier - `emotion`: Detected emotion - `language`: Language code ## Speaker ID Mapping Speaker IDs have been made unique across all merged datasets to avoid conflicts. For example: - Original Dataset A: `speaker_0`, `speaker_1` - Original Dataset B: `speaker_0`, `speaker_1` - Merged Dataset: `speaker_0`, `speaker_1`, `speaker_2`, `speaker_3` Original dataset information is preserved in the metadata for reference. ## Data Quality This dataset was created using the Vyvo Dataset Builder with: - Automatic transcription and diarization - Quality filtering for audio segments - Music and noise filtering - Emotion detection - Language identification ## License This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0). ## Citation ```bibtex @dataset{vyvo_merged_dataset, title={test324234}, author={Vyvo Dataset Builder}, year={2025}, url={https://huggingface.co/datasets/Codyfederer/test324234} } ``` This dataset was created using the Vyvo Dataset Builder tool.