Upload terra_x_scraper.ipynb
Browse files- terra_x_scraper.ipynb +378 -0
terra_x_scraper.ipynb
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"!pip install google_colab_selenium pandas -q"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"id": "v6eFzLRMAZY-",
|
24 |
+
"colab": {
|
25 |
+
"base_uri": "https://localhost:8080/"
|
26 |
+
},
|
27 |
+
"outputId": "603694b7-378c-48a8-8ec9-8d934ddf7db5"
|
28 |
+
},
|
29 |
+
"execution_count": 1,
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"output_type": "stream",
|
33 |
+
"name": "stdout",
|
34 |
+
"text": [
|
35 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.5/9.5 MB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
36 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m467.7/467.7 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
37 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
38 |
+
"\u001b[?25h"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"source": [
|
46 |
+
"import json\n",
|
47 |
+
"from selenium.webdriver.common.by import By\n",
|
48 |
+
"from selenium.webdriver.support.ui import WebDriverWait\n",
|
49 |
+
"from selenium.webdriver.support import expected_conditions as EC\n",
|
50 |
+
"import google_colab_selenium as gs\n",
|
51 |
+
"\n",
|
52 |
+
"driver = gs.ChromeDriver()"
|
53 |
+
],
|
54 |
+
"metadata": {
|
55 |
+
"colab": {
|
56 |
+
"base_uri": "https://localhost:8080/",
|
57 |
+
"height": 38
|
58 |
+
},
|
59 |
+
"id": "HuGRNkypD-WR",
|
60 |
+
"outputId": "b6d8cca6-28d4-4e86-b7bb-d0e88b28a59f"
|
61 |
+
},
|
62 |
+
"execution_count": 86,
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"output_type": "display_data",
|
66 |
+
"data": {
|
67 |
+
"text/plain": [
|
68 |
+
"<IPython.core.display.HTML object>"
|
69 |
+
],
|
70 |
+
"text/html": [
|
71 |
+
"\n",
|
72 |
+
" <div class=\"spinner-container\">\n",
|
73 |
+
" <div class=\"spinner\" id=\"f8a02f04-ae6b-45c4-91fc-344002d27820-circle\"></div>\n",
|
74 |
+
" <div class=\"spinner-text\" id=\"f8a02f04-ae6b-45c4-91fc-344002d27820-text\">Initializing Chromedriver</div>\n",
|
75 |
+
" </div>\n",
|
76 |
+
" <style>\n",
|
77 |
+
" @keyframes spin {\n",
|
78 |
+
" from { transform: rotate(0deg); }\n",
|
79 |
+
" to { transform: rotate(360deg); }\n",
|
80 |
+
" }\n",
|
81 |
+
"\n",
|
82 |
+
" .spinner-container {\n",
|
83 |
+
" display: flex;\n",
|
84 |
+
" align-items: center;\n",
|
85 |
+
" margin-bottom: 3px;\n",
|
86 |
+
" }\n",
|
87 |
+
"\n",
|
88 |
+
" .spinner {\n",
|
89 |
+
" border: 3px solid rgba(0, 0, 0, 0.1);\n",
|
90 |
+
" border-left-color: lightblue;\n",
|
91 |
+
" border-radius: 50%;\n",
|
92 |
+
" width: 12px;\n",
|
93 |
+
" height: 12px;\n",
|
94 |
+
" animation: spin 1s linear infinite;\n",
|
95 |
+
" }\n",
|
96 |
+
"\n",
|
97 |
+
" .spinner-text {\n",
|
98 |
+
" padding-left: 6px;\n",
|
99 |
+
" }\n",
|
100 |
+
" </style>\n",
|
101 |
+
" "
|
102 |
+
]
|
103 |
+
},
|
104 |
+
"metadata": {}
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"output_type": "display_data",
|
108 |
+
"data": {
|
109 |
+
"text/plain": [
|
110 |
+
"<IPython.core.display.Javascript object>"
|
111 |
+
],
|
112 |
+
"application/javascript": [
|
113 |
+
"\n",
|
114 |
+
" const element = document.getElementById(\"f8a02f04-ae6b-45c4-91fc-344002d27820-circle\");\n",
|
115 |
+
" element.style.border = \"3px solid limegreen\";\n",
|
116 |
+
" element.style.animation = \"none\";\n",
|
117 |
+
"\n",
|
118 |
+
" const text = document.getElementById(\"f8a02f04-ae6b-45c4-91fc-344002d27820-text\");\n",
|
119 |
+
" text.innerText = \"Initialized Chromedriver\";\n",
|
120 |
+
" "
|
121 |
+
]
|
122 |
+
},
|
123 |
+
"metadata": {}
|
124 |
+
}
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"source": [
|
130 |
+
"def scrape_categories(url):\n",
|
131 |
+
" category = url.split('#')[0].split('/')[-1]\n",
|
132 |
+
" items = []\n",
|
133 |
+
" # Send a GET request to the website\n",
|
134 |
+
" try:\n",
|
135 |
+
" driver.get(url)\n",
|
136 |
+
" WebDriverWait(driver, 50).until(EC.presence_of_all_elements_located((By.TAG_NAME, \"tx-video-card\")))\n",
|
137 |
+
" # Find all <tx-video-card> elements\n",
|
138 |
+
" card_elements = driver.find_elements(By.TAG_NAME, \"tx-video-card\")\n",
|
139 |
+
" for card in card_elements:\n",
|
140 |
+
" url = card.find_element(By.TAG_NAME, 'a').get_attribute('href')\n",
|
141 |
+
" title = card.find_element(By.TAG_NAME, 'h3').text\n",
|
142 |
+
" items.append({\"url\": url, \"title\": title, \"category\": category})\n",
|
143 |
+
"\n",
|
144 |
+
" except Exception as e:\n",
|
145 |
+
" print(\"An error occurred:\", e)\n",
|
146 |
+
" return items"
|
147 |
+
],
|
148 |
+
"metadata": {
|
149 |
+
"id": "dXTj1qTYU1F_"
|
150 |
+
},
|
151 |
+
"execution_count": 92,
|
152 |
+
"outputs": []
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 93,
|
157 |
+
"metadata": {
|
158 |
+
"id": "YHuy1H4aAUp-"
|
159 |
+
},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"def scrape_article(item):\n",
|
163 |
+
" # Send a GET request to the website\n",
|
164 |
+
" try:\n",
|
165 |
+
" driver.get(item['url'])\n",
|
166 |
+
" item['text'] = []\n",
|
167 |
+
" WebDriverWait(driver, 50).until(EC.presence_of_all_elements_located((By.TAG_NAME, \"p\")))\n",
|
168 |
+
"\n",
|
169 |
+
" # Find all <p> elements and filter empty elements\n",
|
170 |
+
" p_elements = driver.find_elements(By.TAG_NAME, \"p\")\n",
|
171 |
+
" p_elements = list(filter(lambda p: p.text, p_elements))\n",
|
172 |
+
"\n",
|
173 |
+
" # Print the text of each <p> element\n",
|
174 |
+
" for p in p_elements:\n",
|
175 |
+
" if p.text.strip().startswith('ZDF'):\n",
|
176 |
+
" item['attribution'] = p.text.strip()\n",
|
177 |
+
" continue\n",
|
178 |
+
" if p.text.strip().startswith('http'):\n",
|
179 |
+
" item['source'] = p.text.strip()\n",
|
180 |
+
"\n",
|
181 |
+
" item['text'].append(p.text)\n",
|
182 |
+
"\n",
|
183 |
+
" except Exception as e:\n",
|
184 |
+
" print(\"An error occurred:\", e)\n",
|
185 |
+
" return item"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"source": [
|
191 |
+
"urls = [\n",
|
192 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/geowissenschaften#videos',\n",
|
193 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/der-menschliche-koerper#videos',\n",
|
194 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/Biologie#videos',\n",
|
195 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/Geschichte#videos',\n",
|
196 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/religion#videos',\n",
|
197 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/physik#videos',\n",
|
198 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/technik#videos',\n",
|
199 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/chemie#videos',\n",
|
200 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/mathematik#videos',\n",
|
201 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/sozialkunde#videos',\n",
|
202 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/klima-und-klimawandel#videos',\n",
|
203 |
+
" 'https://terraxplaincommons.zdf.de/kategorie/unesco-welterbestaetten#videos'\n",
|
204 |
+
"]\n",
|
205 |
+
"\n",
|
206 |
+
"for url in urls:\n",
|
207 |
+
" items = scrape_categories(url)\n",
|
208 |
+
" items = map(scrape_article, items)\n",
|
209 |
+
" with open('data.jsonl', 'a') as f:\n",
|
210 |
+
" for item in items:\n",
|
211 |
+
" f.write(json.dumps(item) + '\\n')\n",
|
212 |
+
"\n",
|
213 |
+
"driver.quit()"
|
214 |
+
],
|
215 |
+
"metadata": {
|
216 |
+
"id": "quuELC-bdVPG"
|
217 |
+
},
|
218 |
+
"execution_count": null,
|
219 |
+
"outputs": []
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"source": [
|
224 |
+
"import pandas as pd\n",
|
225 |
+
"\n",
|
226 |
+
"df = pd.read_json('data.jsonl', lines=True)"
|
227 |
+
],
|
228 |
+
"metadata": {
|
229 |
+
"id": "IMzB4Qb9in71"
|
230 |
+
},
|
231 |
+
"execution_count": 233,
|
232 |
+
"outputs": []
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"source": [
|
237 |
+
"print(len(df))\n",
|
238 |
+
"# Filter rows where 'url' is null\n",
|
239 |
+
"df = df[df['url'].notnull()]\n",
|
240 |
+
"# Filter rows where 'attribution' is null\n",
|
241 |
+
"df = df[df['attribution'].notnull()]\n",
|
242 |
+
"print(len(df))"
|
243 |
+
],
|
244 |
+
"metadata": {
|
245 |
+
"colab": {
|
246 |
+
"base_uri": "https://localhost:8080/"
|
247 |
+
},
|
248 |
+
"id": "R6QNBS6jkrf9",
|
249 |
+
"outputId": "045c92bb-73eb-4ae5-d80b-d45f88b6ce53"
|
250 |
+
},
|
251 |
+
"execution_count": 234,
|
252 |
+
"outputs": [
|
253 |
+
{
|
254 |
+
"output_type": "stream",
|
255 |
+
"name": "stdout",
|
256 |
+
"text": [
|
257 |
+
"400\n",
|
258 |
+
"331\n"
|
259 |
+
]
|
260 |
+
}
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"source": [
|
266 |
+
"df['text'] = df['text'].apply(lambda arr: [s for s in arr if 'Mehr von Terra X' not in s])\n",
|
267 |
+
"df['text'] = df['text'].apply(lambda arr: [s for s in arr if 'https:' not in s])\n",
|
268 |
+
"df['text'] = df['text'].apply(lambda arr: [s for s in arr if len(s) >= 20])"
|
269 |
+
],
|
270 |
+
"metadata": {
|
271 |
+
"id": "qlACB04Vps8Z"
|
272 |
+
},
|
273 |
+
"execution_count": 235,
|
274 |
+
"outputs": []
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"source": [
|
279 |
+
"# Filter rows with text array length 0\n",
|
280 |
+
"df = df[df['text'].apply(len) > 0]\n",
|
281 |
+
"print(len(df))"
|
282 |
+
],
|
283 |
+
"metadata": {
|
284 |
+
"colab": {
|
285 |
+
"base_uri": "https://localhost:8080/"
|
286 |
+
},
|
287 |
+
"id": "nQrdXChExgrc",
|
288 |
+
"outputId": "41e65e15-c992-4db1-cd64-ba8924d5db14"
|
289 |
+
},
|
290 |
+
"execution_count": 236,
|
291 |
+
"outputs": [
|
292 |
+
{
|
293 |
+
"output_type": "stream",
|
294 |
+
"name": "stdout",
|
295 |
+
"text": [
|
296 |
+
"331\n"
|
297 |
+
]
|
298 |
+
}
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"source": [
|
304 |
+
"# Filter rows with text array length < 3\n",
|
305 |
+
"df = df[df['text'].apply(len) < 3]\n",
|
306 |
+
"print(len(df))"
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"colab": {
|
310 |
+
"base_uri": "https://localhost:8080/"
|
311 |
+
},
|
312 |
+
"id": "SOKohp8PwQfK",
|
313 |
+
"outputId": "6d9ee70a-84e6-406f-bb4d-620a0f7e59f6"
|
314 |
+
},
|
315 |
+
"execution_count": 237,
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"output_type": "stream",
|
319 |
+
"name": "stdout",
|
320 |
+
"text": [
|
321 |
+
"283\n"
|
322 |
+
]
|
323 |
+
}
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"source": [
|
329 |
+
"# Create new column 'short_text' containing the shorter string from each array\n",
|
330 |
+
"df['short_text'] = df['text'].apply(lambda arr: min(arr, key=len))\n",
|
331 |
+
"\n",
|
332 |
+
"# Delete the 'short_text' from the 'text' array\n",
|
333 |
+
"df['text'] = df['text'].apply(lambda arr: max(arr, key=len))\n",
|
334 |
+
"\n",
|
335 |
+
"# Convert the 'text' array to a string\n",
|
336 |
+
"df['text'] = df['text'].str.join('')"
|
337 |
+
],
|
338 |
+
"metadata": {
|
339 |
+
"id": "9rxgo5uwzXdS"
|
340 |
+
},
|
341 |
+
"execution_count": 238,
|
342 |
+
"outputs": []
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"source": [
|
347 |
+
"df['source'] = df['source'].fillna('')"
|
348 |
+
],
|
349 |
+
"metadata": {
|
350 |
+
"id": "lVc_gl8Nz5jO"
|
351 |
+
},
|
352 |
+
"execution_count": 239,
|
353 |
+
"outputs": []
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"source": [
|
358 |
+
"print(df.head())"
|
359 |
+
],
|
360 |
+
"metadata": {
|
361 |
+
"id": "gxuik5azzdKl"
|
362 |
+
},
|
363 |
+
"execution_count": null,
|
364 |
+
"outputs": []
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"source": [
|
369 |
+
"df.to_json('clean_data.jsonl', orient='records', lines=True)"
|
370 |
+
],
|
371 |
+
"metadata": {
|
372 |
+
"id": "bKzASrQii7su"
|
373 |
+
},
|
374 |
+
"execution_count": 241,
|
375 |
+
"outputs": []
|
376 |
+
}
|
377 |
+
]
|
378 |
+
}
|