amsa02 commited on
Commit
d1d7214
·
verified ·
1 Parent(s): 32750e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -42
README.md CHANGED
@@ -8,96 +8,226 @@ size_categories:
8
  tasks:
9
  - named-entity-recognition
10
  - token-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  # Dataset Card for BotanicalNER
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ### Dataset Summary
16
- BotanicalNER is a Named Entity Recognition dataset for scientific and vernacular plant names in German and English. The dataset was created for a master thesis project at the University of Zurich focusing on identifying and disambiguating plant names across multiple text genres to extract and preserve (ethno-)botanical knowledge.
17
 
18
- The dataset contains text with plant name entities marked in IOB format, enabling the training of NER models to recognize both scientific names (e.g., "Urtica dioica") and vernacular plant names (e.g., "nettle") in natural text.
19
 
20
- For a full description of the dataset, please refer to the master thesis: Meraner, I. 2019. "Grasping the Nettle: Neural Entity Recognition for Scientific and Vernacular Plant Names." Master Thesis, Institute of Computational Linguistics, University of Zurich.
 
 
 
 
 
 
 
21
 
22
  ### Supported Tasks and Leaderboards
23
- - **Named Entity Recognition**: The dataset is designed for training and evaluating NER models for plant name recognition.
24
- - **Botanical Knowledge Extraction**: Can be used as a resource for systems aiming to extract botanical knowledge from text.
 
25
 
26
  ### Languages
27
- The dataset supports two languages:
28
- - German (`de`)
29
- - English (`en`)
30
 
31
  ## Dataset Structure
32
 
 
 
33
  ### Data Instances
34
- An example from the German dataset:
 
 
35
  ```json
36
  {
37
  "id": "0",
38
  "tokens": ["Die", "Brennnessel", "(", "Urtica", "dioica", ")", "ist", "eine", "wichtige", "Heilpflanze", "."],
39
  "pos_tags": ["ART", "NN", "$(", "NE", "NE", "$)", "VAFIN", "ART", "ADJA", "NN", "$."],
40
- "ner_tags": ["O", "B-Vernacular", "O", "B-Scientific", "I-Scientific", "O", "O", "O", "O", "O", "O"]
41
  }
42
  ```
43
 
44
  ### Data Fields
45
- - `id`: Unique identifier for each sentence, a `string` feature.
46
- - `tokens`: The tokens/words in the sentence, a sequence of `string`s.
47
- - `pos_tags`: Part-of-speech tags for each token, a sequence of `string`s.
48
- - `ner_tags`: Named entity recognition tags in IOB format, a sequence of `ClassLabel` features with the following classes:
49
- - `O`: Outside any entity
50
- - `B-Scientific`: Beginning of a scientific plant name
51
- - `I-Scientific`: Inside a scientific plant name
52
- - `B-Vernacular`: Beginning of a vernacular plant name
53
- - `I-Vernacular`: Inside a vernacular plant name
54
 
55
- ### Data Splits
56
- The dataset includes multiple splits for both German and English. The training data is a silver-standard corpus, while the test and fungi splits are gold-standard.
 
 
 
57
 
58
- | Split | German Files | English Files | Description |
59
- |-------|--------------|---------------|----------------------------------------------------|
60
- | train | 4 | 4 | Silver standard training data from multiple sources|
61
- | test | 1 | 1 | Gold standard test fold |
62
- | fungi | 1 | 1 | Gold standard fungi testset for in-domain evaluation|
 
 
 
 
 
 
63
 
64
- Training data sources include:
65
- - Plant blog corpus
66
- - Wikipedia abstract corpus
67
- - TextBerg subcorpus
68
- - Botanical literature corpus
69
 
70
  ## Dataset Creation
71
- The dataset was created to address the need for robust plant name recognition across different text genres. The training data was collected from multiple sources, tokenized, and POS-tagged using TreeTagger. The training data was automatically annotated using dictionary-based methods (silver standard), while the test data was manually annotated and verified (gold standard).
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ### Personal and Sensitive Information
 
74
  The dataset does not contain personal or sensitive information as it focuses on botanical and scientific content.
75
 
76
  ## Considerations for Using the Data
 
77
  ### Social Impact of Dataset
78
- This dataset can have a positive social impact by:
79
- - Enabling better extraction and preservation of botanical knowledge.
80
- - Supporting biodiversity research and conservation efforts.
81
- - Assisting in ethnobotanical knowledge preservation.
82
 
83
  ### Discussion of Biases
 
84
  Potential biases include geographic bias in plant names, source bias from different text genres, and domain bias from the specific sources used. Most training data also uses automatic annotation which may contain errors.
85
 
86
  ## Additional Information
87
 
88
  ### Dataset Curators
89
- Isabel Meraner, Institute of Computational Linguistics, University of Zurich (Switzerland), 2019.
 
90
 
91
  ### Licensing Information
92
- The dataset is licensed under the GNU General Public License v3.0.
 
93
 
94
  ### Citation Information
95
- ```
 
96
  @mastersthesis{meraner2019grasping,
97
  title={Grasping the Nettle: Neural Entity Recognition for Scientific and Vernacular Plant Names},
98
- author={Isabel Meraner},
99
  year={2019},
100
- school={Institute of Computational Linguistics, University of Zurich},
101
- note={Available at: [https://github.com/IsabelMeraner/BotanicalNER](https://github.com/IsabelMeraner/BotanicalNER)}
102
  }
103
  ```
 
8
  tasks:
9
  - named-entity-recognition
10
  - token-classification
11
+ pretty_name: BotanicalNER
12
+ tags:
13
+ - named-entity-recognition
14
+ - botany
15
+ - multilingual
16
+ configs:
17
+ - config_name: botlit_de
18
+ data_files:
19
+ - split: train
20
+ path: botlit_de/*
21
+ default: true
22
+ - config_name: botlit_en
23
+ data_files:
24
+ - split: train
25
+ path: botlit_en/*
26
+ - config_name: plantblog_de
27
+ data_files:
28
+ - split: train
29
+ path: plantblog_de/*
30
+ - config_name: plantblog_en
31
+ data_files:
32
+ - split: train
33
+ path: plantblog_en/*
34
+ - config_name: textberg_de
35
+ data_files:
36
+ - split: train
37
+ path: textberg_de/*
38
+ - config_name: textberg_en
39
+ data_files:
40
+ - split: train
41
+ path: textberg_en/*
42
+ - config_name: wiki_de
43
+ data_files:
44
+ - split: train
45
+ path: wiki_de/*
46
+ - config_name: wiki_en
47
+ data_files:
48
+ - split: train
49
+ path: wiki_en/*
50
+ - config_name: gold_de
51
+ data_files:
52
+ - split: test
53
+ path: gold_de/*
54
+ - config_name: gold_en
55
+ data_files:
56
+ - split: test
57
+ path: gold_en/*
58
+ - config_name: fungi_de
59
+ data_files:
60
+ - split: test
61
+ path: fungi_de/*
62
+ - config_name: fungi_en
63
+ data_files:
64
+ - split: test
65
+ path: fungi_en/*
66
+ dataset_info:
67
+ - config_name: botlit_de
68
+ features:
69
+ - name: id
70
+ dtype: string
71
+ - name: tokens
72
+ sequence: string
73
+ - name: pos_tags
74
+ sequence: string
75
+ - name: ner_tags
76
+ sequence:
77
+ class_label:
78
+ names:
79
+ '0': O
80
+ '1': B-Scientific
81
+ '2': I-Scientific
82
+ '3': B-Vernacular
83
+ '4': I-Vernacular
84
+ splits:
85
+ - name: train
86
+ num_bytes: 100000 # Placeholder
87
+ num_examples: 1000 # Placeholder
88
+ # Note: The Hub will auto-populate dataset_info for all other configs.
89
  ---
90
 
91
  # Dataset Card for BotanicalNER
92
 
93
+ ## Table of Contents
94
+ - [Dataset Card for BotanicalNER](#dataset-card-for-botanicalner)
95
+ - [Table of Contents](#table-of-contents)
96
+ - [Dataset Description](#dataset-description)
97
+ - [Dataset Summary](#dataset-summary)
98
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
99
+ - [Languages](#languages)
100
+ - [Dataset Structure](#dataset-structure)
101
+ - [Data Instances](#data-instances)
102
+ - [Data Fields](#data-fields)
103
+ - [Data Splits](#data-splits)
104
+ - [Dataset Creation](#dataset-creation)
105
+ - [Curation Rationale](#curation-rationale)
106
+ - [Source Data](#source-data)
107
+ - [Annotations](#annotations)
108
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
109
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
110
+ - [Social Impact of Dataset](#social-impact-of-dataset)
111
+ - [Discussion of Biases](#discussion-of-biases)
112
+ - [Additional Information](#additional-information)
113
+ - [Dataset Curators](#dataset-curators)
114
+ - [Licensing Information](#licensing-information)
115
+ - [Citation Information](#citation-information)
116
+
117
+ ## Dataset Description
118
+
119
+ - **Homepage:** [https://github.com/IsabelMeraner/BotanicalNER](https://github.com/IsabelMeraner/BotanicalNER)
120
+ - **Paper:** Meraner, I. 2019. *Grasping the Nettle: Neural Entity Recognition for Scientific and Vernacular Plant Names*. Master Thesis, Institute of Computational Linguistics, University of Zurich.
121
+ - **Point of Contact:** Isabel Meraner
122
+
123
  ### Dataset Summary
 
124
 
125
+ **BotanicalNER** is a German-English parallel dataset for Named Entity Recognition (NER) of scientific and vernacular plant names. The resources were created for the master thesis project "Grasping the Nettle" at the University of Zurich in 2019.
126
 
127
+ The main focus of the project was to identify and disambiguate scientific and vernacular plant names across multiple text genres to provide a valuable tool for extracting and preserving (ethno-)botanical knowledge. The dataset is structured into several sub-corpora from different domains, which are available as separate configurations:
128
+
129
+ - `botlit`: Botanical literature
130
+ - `plantblog`: Plant-themed blog posts
131
+ - `wiki`: Wikipedia abstracts
132
+ - `textberg`: The TextBerg corpus of Alpine Club yearbooks
133
+ - `gold`: Gold-standard test sets
134
+ - `fungi`: A specialized test set for fungi names
135
 
136
  ### Supported Tasks and Leaderboards
137
+
138
+ - **Tasks**: Named Entity Recognition, Token Classification
139
+ - **Leaderboards**: N/A
140
 
141
  ### Languages
142
+
143
+ The dataset contains texts in German (`de`) and English (`en`).
 
144
 
145
  ## Dataset Structure
146
 
147
+ The dataset is composed of multiple configurations, one for each sub-corpus and language (e.g., `botlit_de`, `wiki_en`, `gold_de`).
148
+
149
  ### Data Instances
150
+
151
+ An example from the `gold_de` configuration:
152
+
153
  ```json
154
  {
155
  "id": "0",
156
  "tokens": ["Die", "Brennnessel", "(", "Urtica", "dioica", ")", "ist", "eine", "wichtige", "Heilpflanze", "."],
157
  "pos_tags": ["ART", "NN", "$(", "NE", "NE", "$)", "VAFIN", "ART", "ADJA", "NN", "$."],
158
+ "ner_tags": [0, 3, 0, 1, 2, 0, 0, 0, 0, 0, 0]
159
  }
160
  ```
161
 
162
  ### Data Fields
 
 
 
 
 
 
 
 
 
163
 
164
+ All configurations share the same data fields:
165
+ - `id`: A unique identifier for the example, a `string` feature.
166
+ - `tokens`: The list of tokens in the sentence, a `Sequence` of `string` features.
167
+ - `pos_tags`: The list of part-of-speech tags, a `Sequence` of `string` features.
168
+ - `ner_tags`: The list of NER tags, a `Sequence` of `ClassLabel` features. The mapping from ID to tag is as follows:
169
 
170
+ ```json
171
+ {
172
+ "0": "O",
173
+ "1": "B-Scientific",
174
+ "2": "I-Scientific",
175
+ "3": "B-Vernacular",
176
+ "4": "I-Vernacular"
177
+ }
178
+ ```
179
+
180
+ ### Data Splits
181
 
182
+ The data is provided as several distinct corpora, loaded via configurations.
183
+ - The `botlit`, `plantblog`, `textberg`, and `wiki` configurations each contain a **train** split composed of silver-standard data.
184
+ - The `gold` and `fungi` configurations each contain a **test** split composed of gold-standard data.
 
 
185
 
186
  ## Dataset Creation
187
+
188
+ ### Curation Rationale
189
+
190
+ The project aimed to create a robust tool for extracting plant names from diverse texts, which is a crucial step for digitizing and preserving botanical and ethno-botanical knowledge.
191
+
192
+ ### Source Data
193
+
194
+ The data was collected from various sources, tokenized, and POS-tagged using TreeTagger.
195
+
196
+ ### Annotations
197
+
198
+ The dataset was annotated using a dictionary-based method (silver standard) and manual correction (gold standard). The annotation scheme is IOB (Inside, Outside, Beginning) for two entity types: `Scientific` and `Vernacular` plant names.
199
 
200
  ### Personal and Sensitive Information
201
+
202
  The dataset does not contain personal or sensitive information as it focuses on botanical and scientific content.
203
 
204
  ## Considerations for Using the Data
205
+
206
  ### Social Impact of Dataset
207
+
208
+ This dataset can have a positive social impact by enabling better extraction of botanical knowledge, supporting biodiversity research, and assisting in the preservation of ethnobotanical knowledge.
 
 
209
 
210
  ### Discussion of Biases
211
+
212
  Potential biases include geographic bias in plant names, source bias from different text genres, and domain bias from the specific sources used. Most training data also uses automatic annotation which may contain errors.
213
 
214
  ## Additional Information
215
 
216
  ### Dataset Curators
217
+
218
+ Isabel Meraner, Institute of Computational Linguistics, University of Zurich (2019).
219
 
220
  ### Licensing Information
221
+
222
+ The dataset is licensed under the GNU General Public License v3.0 (GPL-3.0).
223
 
224
  ### Citation Information
225
+
226
+ ```bibtex
227
  @mastersthesis{meraner2019grasping,
228
  title={Grasping the Nettle: Neural Entity Recognition for Scientific and Vernacular Plant Names},
229
+ author={Meraner, Isabel},
230
  year={2019},
231
+ school={Institute of Computational Linguistics, University of Zurich}
 
232
  }
233
  ```