Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K - 10K
ArXiv:
File size: 9,625 Bytes
eb58348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CrossRE is a cross-domain dataset for relation extraction"""
import json
import datasets
_CITATION = """\
@inproceedings{bassignana-plank-2022-crossre,
title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction",
author = "Bassignana, Elisa and Plank, Barbara",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
year = "2022",
publisher = "Association for Computational Linguistics"
}
"""
_DESCRIPTION = """\
CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes
multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and
artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain
dataset for NER which contains domain-specific entity types.
The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL,
GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and
RELATED-TO.
For details, see the paper: https://arxiv.org/abs/2210.09345
"""
_HOMEPAGE = "https://github.com/mainlp/CrossRE"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"news": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/news-test.json",
},
"politics": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/politics-test.json",
},
"science": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/science-test.json",
},
"music": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/music-test.json",
},
"literature": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/literature-test.json",
},
"ai": {
"train": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-train.json",
"validation": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-dev.json",
"test": "https://raw.githubusercontent.com/mainlp/CrossRE/main/crossre_data/ai-test.json",
},
}
class CrossRE(datasets.GeneratorBasedBuilder):
"""CrossRE is a cross-domain dataset for relation extraction"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="news", version=VERSION,
description="This part of CrossRE covers data from the news domain"),
datasets.BuilderConfig(name="politics", version=VERSION,
description="This part of CrossRE covers data from the politics domain"),
datasets.BuilderConfig(name="science", version=VERSION,
description="This part of CrossRE covers data from the science domain"),
datasets.BuilderConfig(name="music", version=VERSION,
description="This part of CrossRE covers data from the music domain"),
datasets.BuilderConfig(name="literature", version=VERSION,
description="This part of CrossRE covers data from the literature domain"),
datasets.BuilderConfig(name="ai", version=VERSION,
description="This part of CrossRE covers data from the AI domain"),
]
def _info(self):
features = datasets.Features(
{
"doc_key": datasets.Value("string"),
"sentence": datasets.Sequence(datasets.Value("string")),
"ner": [{
"id-start": datasets.Value("int32"),
"id-end": datasets.Value("int32"),
"entity-type": datasets.Value("string"),
}],
"relations": [{
"id_1-start": datasets.Value("int32"),
"id_1-end": datasets.Value("int32"),
"id_2-start": datasets.Value("int32"),
"id_2-end": datasets.Value("int32"),
"relation-type": datasets.Value("string"),
"Exp": datasets.Value("string"), # Explanation of the relation type assigned
"Un": datasets.Value("bool"), # Uncertainty of the annotator
"SA": datasets.Value("bool"), # Syntax Ambiguity which poses a challenge for the annotator
}]
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
downloaded_files = dl_manager.download_and_extract(urls)
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for row in f:
doc = json.loads(row)
doc_key = doc["doc_key"]
ner = []
for entity in doc["ner"]:
ner.append({
"id-start": entity[0],
"id-end": entity[1],
"entity-type": entity[2],
})
relations = []
for relation in doc["relations"]:
relations.append({
"id_1-start": relation[0],
"id_1-end": relation[1],
"id_2-start": relation[2],
"id_2-end": relation[3],
"relation-type": relation[4],
"Exp": relation[5],
"Un": relation[6],
"SA": relation[7],
})
yield doc_key, {
"doc_key": doc_key,
"sentence": doc["sentence"],
"ner": ner,
"relations": relations
}
|