File size: 4,550 Bytes
72b1d25
ffbe164
 
 
72b1d25
ffbe164
 
72b1d25
 
 
ffbe164
72b1d25
 
1e5161a
 
 
 
 
8b63ca3
 
1e5161a
 
8b63ca3
 
 
 
1e5161a
 
 
 
 
 
8b63ca3
 
1e5161a
 
b6e948f
8b63ca3
 
b6e948f
8b63ca3
 
b6e948f
1e5161a
ce76c14
 
ab2d20f
ce76c14
ffbe164
ab2d20f
ffbe164
ce76c14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af843e
ce76c14
5af843e
4ead72b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- en
- hi
license: cc-by-nc-sa-4.0
size_categories:
- 1K<n<10K
task_categories:
- table-question-answering
- visual-question-answering
- image-text-to-text
tags:
- cricket
configs:
- config_name: default
  data_files:
  - split: test_single
    path: data/test_single-*
  - split: test_multi
    path: data/test_multi-*
dataset_info:
  features:
  - name: id
    dtype: string
  - name: images
    sequence: image
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: category
    dtype: string
  - name: subset
    dtype: string
  splits:
  - name: test_single
    num_bytes: 976385438.0
    num_examples: 2000
  - name: test_multi
    num_bytes: 904538778.0
    num_examples: 997
  download_size: 1573738795
  dataset_size: 1880924216.0
---

# MMCricBench 🏏
**Multimodal Cricket Scorecard Benchmark for VQA**

This repository contains the dataset for the paper [Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs](https://huggingface.co/papers/2508.17334).

MMCricBench evaluates **Large Vision-Language Models (LVLMs)** on **numerical reasoning**, **cross-lingual understanding**, and **multi-image reasoning** over semi-structured cricket scorecard images. It includes English and Hindi scorecards; all questions/answers are in English.

---

## Overview
- **Images:** 1,463 synthetic scorecards (PNG)  
  - 822 single-image scorecards  
  - 641 multi-image scorecards
- **QA pairs:** 1,500 (English)
- **Reasoning categories:**  
  - **C1** – Direct retrieval & simple inference  
  - **C2** – Basic arithmetic & conditional logic  
  - **C3** – Multi-step quantitative reasoning (often across images)

---

## Files / Splits
We provide two evaluation splits:
- `test_single` — single-image questions  
- `test_multi` — multi-image questions

> If you keep a single JSONL (e.g., `test_all.jsonl`), use a **list** for `images` in every row. Single-image rows should have a one-element list. On the Hub, we expose two test splits.

---

## Data Schema
Each row is a JSON object:

| Field      | Type                | Description                                  |
|------------|---------------------|----------------------------------------------|
| `id`       | `string`            | Unique identifier                            |
| `images`   | `list[string]`      | Paths to one or more scorecard images        |
| `question` | `string`            | Question text (English)                      |
| `answer`   | `string`            | Ground-truth answer (canonicalized)          |
| `category` | `string` (`C1/C2/C3`)| Reasoning category                           |
| `subset`*  | `string` (`single/multi`) | Optional convenience field              |

**Example (single-image):**
```json
{"id":"english-single-9","images":["English-apr/single_image/1198246_2innings_with_color1.png"],"question":"Which bowler has conceded the most extras?","answer":"Wahab Riaz","category":"C2","subset":"single"}
```

## Loading & Preview

### Load from the Hub (two-split layout)
```python
from datasets import load_dataset

# Loads: DatasetDict({'test_single': ..., 'test_multi': ...})
ds = load_dataset("DIALab/MMCricBench")
print(ds)

# Peek a single-image example
ex = ds["test_single"][0]
print(ex["id"])
print(ex["question"], "->", ex["answer"])

# Preview images (each example stores a list of PIL images)
from IPython.display import display
for img in ex["images"]:
    display(img)
```

## Baseline Results (from the paper)

Accuracy (%) on MMCricBench by split and language.

| Model             | #Params | Single-EN (Avg) | Single-HI (Avg) | Multi-EN (Avg) | Multi-HI (Avg) |
|-------------------|:------:|:---------------:|:---------------:|:--------------:|:--------------:|
| SmolVLM           | 500M   | 19.2 | 19.0 | 11.8 | 11.6 |
| Qwen2.5VL         | 3B     | 40.2 | 33.3 | 31.2 | 22.0 |
| LLaVA-NeXT        | 7B     | 28.3 | 26.6 | 16.2 | 14.8 |
| mPLUG-DocOwl2     | 8B     | 20.7 | 19.9 | 15.2 | 14.4 |
| Qwen2.5VL         | 7B     | 49.1 | 42.6 | 37.0 | 32.2 |
| InternVL-2        | 8B     | 29.4 | 23.4 | 18.6 | 18.2 |
| Llama-3.2-V       | 11B    | 27.3 | 24.8 | 26.2 | 20.4 |
| **GPT-4o**        | —      | **57.3** | **45.1** | **50.6** | **43.6** |

*Numbers are exact-match accuracy (higher is better). For C1/C2/C3 breakdowns, see Table 3 (single-image) and Table 5 (multi-image) in the paper.* 

## Contact
For questions or issues, please open a discussion on the dataset page or email **Abhirama Subramanyam** at [email protected]