--- license: mit task_categories: - image-classification language: - en --- # MUFAC (Machine Unlearning for Facial Age Classifier) [![arXiv](https://img.shields.io/badge/arXiv-2311.02240-b31b1b.svg)](https://arxiv.org/abs/2311.02240) This repository provides a **cleaned and resolution-aligned (128x128) version** of the MUFAC benchmark dataset. --- ## 📘 Description A multi-class age classification dataset featuring over 86,000 Asian facial images with annotations for age groups and personal identities. MUFAC examples - Preprocessed facial images (128×128 resolution) - CSV files (`custom_train_dataset.csv`, etc.) for structured training/evaluation - Separation of identity-forgettable vs. retained images (`forget_images`, `retain_images`) - Suitable for benchmarking **machine unlearning** algorithms, especially in **task-agnostic setups** It is specifically intended for experiments where **personal identities are selectively unlearned**, without degrading model utility on the original task (e.g., age classification). --- ## 🗂️ Dataset Structure ``` MUFAC/ ├── forget_images/ # 1,500 images to be unlearned ├── retain_images/ # 8,525 images to retain ├── train_images_part1/ # 9,999 training images (part 1) ├── train_images_part2/ # 26 training images (part 2) ├── val_images/ # 1,539 validation images ├── test_images/ # 4,513 test images ├── fixed_test_dataset_negative/ # 5,000 identity-balanced test data (negative) ├── fixed_test_dataset_positive/ # 5,000 identity-balanced test data (positive) ├── fixed_val_dataset_negative/ # 5,000 identity-balanced val data (negative) ├── fixed_val_dataset_positive/ # 5,000 identity-balanced val data (positive) ├── custom_train_dataset.csv # CSV with image paths and labels ├── custom_val_dataset.csv # Validation CSV └── custom_test_dataset.csv # Test CSV ``` - CSV files follow the format: `image_path`, `age_group`, `identity`, `forget_flag`, etc. - All image paths are relative and usable with `datasets.Image()` or `PIL`. --- ## 🔹 How to Use ```python # Method 1: Git Clone (Recommended) git lfs install git clone https://huggingface.co/datasets/Dasool/MUFAC cd MUFAC ``` # Method 2: Using Hugging Face Hub API ``` from huggingface_hub import snapshot_download # Download entire dataset local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset") print(f"Dataset downloaded to: {local_dir}") ``` # Method 3: Load CSV and Images ``` import pandas as pd import os from PIL import Image # Load CSV df = pd.read_csv("MUFAC/custom_train_dataset.csv") print(f"Dataset size: {len(df)} samples") print(df.head()) # Load sample image sample_row = df.iloc[0] img_path = os.path.join("MUFAC", sample_row["image_path"]) img = Image.open(img_path) img.show() ``` --- ## 📊 Citation This dataset is part of the benchmark suite introduced in the following paper: ```bibtex @misc{choi2023machine, title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems}, author={Dasol Choi and Dongbin Na}, year={2023}, eprint={2311.02240}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` - 🔗 Code for Experiments:: [https://github.com/ndb796/MachineUnlearning](https://github.com/ndb796/MachineUnlearning) - 📧 Contact: dasolchoi@yonsei.ac.kr