Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI commited on
Commit
7e894eb
·
verified ·
1 Parent(s): 8bd85e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -424,7 +424,7 @@ Domain and content type classification probabilities:
424
 
425
  ## How to Load the Dataset
426
 
427
- This section provides examples of how to load the `EssentialAI/eai-taxonomy-code-w-dclm` dataset using different Python libraries and frameworks.
428
 
429
  ### Using Hugging Face Datasets (Standard Method)
430
 
@@ -434,7 +434,7 @@ The simplest way to load the dataset is using the Hugging Face `datasets` librar
434
  from datasets import load_dataset
435
 
436
  # Load the entire dataset
437
- dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm")
438
 
439
  # View dataset structure
440
  print(dataset)
@@ -447,7 +447,7 @@ You can also load the dataset in streaming mode to avoid downloading the entire
447
  from datasets import load_dataset
448
 
449
  # Load in streaming mode
450
- dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm", streaming=True)
451
  data_stream = dataset["train"]
452
 
453
  # Iterate through examples
@@ -470,7 +470,7 @@ from pyspark.sql import SparkSession
470
  spark = SparkSession.builder.appName("EAI-Taxonomy-Code-w-DCLM").getOrCreate()
471
 
472
  # Load the dataset using the "huggingface" data source
473
- df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-code-w-dclm")
474
 
475
  # Basic dataset exploration
476
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
@@ -481,7 +481,7 @@ df.printSchema()
481
  df_subset = (
482
  spark.read.format("huggingface")
483
  .option("columns", '["column1", "column2"]') # Replace with actual column names
484
- .load("EssentialAI/eai-taxonomy-code-w-dclm")
485
  )
486
 
487
  # Run SQL queries on the dataset
@@ -501,7 +501,7 @@ Daft provides a modern DataFrame library optimized for machine learning workload
501
  import daft
502
 
503
  # Load the entire dataset
504
- df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm")
505
 
506
  # Basic exploration
507
  print("Dataset schema:")
@@ -518,7 +518,7 @@ import daft
518
  from daft.io import IOConfig, HTTPConfig
519
 
520
  io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
521
- df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm", io_config=io_config)
522
  ```
523
 
524
  ### Installation Requirements
 
424
 
425
  ## How to Load the Dataset
426
 
427
+ This section provides examples of how to load the `EssentialAI/eai-taxonomy-code-w-dclm-100b-sample` dataset using different Python libraries and frameworks.
428
 
429
  ### Using Hugging Face Datasets (Standard Method)
430
 
 
434
  from datasets import load_dataset
435
 
436
  # Load the entire dataset
437
+ dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm-100b-sample")
438
 
439
  # View dataset structure
440
  print(dataset)
 
447
  from datasets import load_dataset
448
 
449
  # Load in streaming mode
450
+ dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm-100b-sample", streaming=True)
451
  data_stream = dataset["train"]
452
 
453
  # Iterate through examples
 
470
  spark = SparkSession.builder.appName("EAI-Taxonomy-Code-w-DCLM").getOrCreate()
471
 
472
  # Load the dataset using the "huggingface" data source
473
+ df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-code-w-dclm-100b-sample")
474
 
475
  # Basic dataset exploration
476
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
 
481
  df_subset = (
482
  spark.read.format("huggingface")
483
  .option("columns", '["column1", "column2"]') # Replace with actual column names
484
+ .load("EssentialAI/eai-taxonomy-code-w-dclm-100b-sample")
485
  )
486
 
487
  # Run SQL queries on the dataset
 
501
  import daft
502
 
503
  # Load the entire dataset
504
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm-100b-sample")
505
 
506
  # Basic exploration
507
  print("Dataset schema:")
 
518
  from daft.io import IOConfig, HTTPConfig
519
 
520
  io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
521
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm-100b-sample", io_config=io_config)
522
  ```
523
 
524
  ### Installation Requirements