Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI commited on
Commit
4a987cd
·
verified ·
1 Parent(s): 101921c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +544 -3
README.md CHANGED
@@ -1,3 +1,544 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # 🔬 EAI-Taxonomy STEM w/ DCLM
6
+
7
+ A high-quality STEM dataset curated from web data using taxonomy-based filtering, containing **100 billion tokens** of science, technology, engineering, and mathematics content.
8
+
9
+ ## 🎯 Dataset Overview
10
+
11
+ This dataset is part of the **EssentialWeb** project, which introduces a new paradigm for dataset curation using expressive metadata and simple semantic filters. Unlike traditional STEM datasets that require complex domain-specific pipelines, our approach leverages a 12-category taxonomy to efficiently identify and extract high-quality STEM content.
12
+
13
+ **🧪 EAI-Taxonomy STEM w/ DCLM** (100B tokens): Documents targeting science, engineering, medical, and computer science content that exhibit reasoning, combined with the DCLM classifier to filter for instruction-dense documents.
14
+
15
+ ## 🏆 Performance
16
+
17
+ Our taxonomy-based approach achieves superior results with significantly less curation effort:
18
+
19
+ | Dataset | MMLU-STEM | Curation Complexity |
20
+ |---------|-----------|-------------------|
21
+ | DCLM-baseline | 27.7% | General web filtering |
22
+ | FineWeb-Edu | 26.7% | Educational filtering |
23
+ | EAI-Taxonomy STEM | 29.1% | Simple semantic filter |
24
+ | EAI-Taxonomy STEM w/ DCLM | **34.5%** | + DCLM classifier |
25
+
26
+ *Results show **+24.5% improvement** over DCLM and **+29.2% improvement** over FineWeb-Edu.*
27
+
28
+ ## 🔍 Key Findings
29
+
30
+ - **Strong STEM Performance**: Outperforms baseline and educational datasets beyond standard error
31
+ - **Efficient Curation**: Achieves superior results without complex domain-specific pipelines
32
+ - **Broad Coverage**: Encompasses science, engineering, medical, and computer science domains
33
+ - **Quality Focus**: Selects high-quality document types and filters for reasoning content
34
+
35
+ # Dataset Schema Documentation
36
+
37
+ ## Overview
38
+
39
+ This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics.
40
+
41
+ ## Core Fields
42
+
43
+ | Field | Type | Description | Path |
44
+ |-------|------|-------------|------|
45
+ | `id` | `Int64` | Unique identifier based on document hash | `id` |
46
+ | `text` | `String` | The main textual content of the document | `text` |
47
+
48
+ ## EAI Taxonomy Classification
49
+
50
+ Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset. The taxonomy is designed to provide detailed subject categorization, document type identification, content quality assessment, and extraction quality indicators.
51
+
52
+ <details>
53
+ <summary><strong>Free Decimal Correspondence (FDC)</strong></summary>
54
+
55
+ A Dewey Decimal-inspired classification system with 3-level hierarchical labels. The FDC provides nested categories where each successive level refines its parent category. It's designed to be compatible with the Dewey Decimal System for library cataloging.
56
+
57
+ **Level Structure:**
58
+ - **Level 1**: Top-level categories (0-9) covering broad subject areas like General works, Philosophy, Religion, Social Sciences, etc.
59
+ - **Level 2**: Sub-divisions (00-99) that refine Level 1 categories
60
+ - **Level 3**: Specific categories (000-999) that further refine Level 2 categories
61
+
62
+ | Component | Description | Path |
63
+ |-----------|-------------|------|
64
+ | Primary Code | Main classification code | `eai_taxonomy.free_decimal_correspondence.primary.code` |
65
+ | Primary Level 1 | Top-level category (0=General works, 1=Philosophy, 2=Religion, 3=Social Sciences, 4=Language, 5=Science, 6=Technology, 7=Arts, 8=Literature, 9=History/Geography) | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_1` |
66
+ | Primary Level 2 | Mid-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_2` |
67
+ | Primary Level 3 | Specific category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_3` |
68
+ | Secondary Code | Alternative classification code | `eai_taxonomy.free_decimal_correspondence.secondary.code` |
69
+ | Secondary Level 1 | Alternative top-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1` |
70
+ | Secondary Level 2 | Alternative mid-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2` |
71
+ | Secondary Level 3 | Alternative specific category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3` |
72
+
73
+ We recommend this viewer for easily navigating the FDC categories when curating filters: https://www.librarything.com/mds
74
+
75
+ </details>
76
+
77
+ <details>
78
+ <summary><strong>Bloom's Taxonomy Integration</strong></summary>
79
+
80
+ Based on Anderson and Krathwohl's 2001 revision of Bloom's Taxonomy of Educational Objectives, providing two complementary categorization dimensions for educational content analysis.
81
+
82
+ ### Knowledge Domain
83
+ Categorizes the type of knowledge demonstrated in the document:
84
+
85
+ | Component | Description | Path |
86
+ |-----------|-------------|------|
87
+ | Primary Code | Main knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.primary.code` |
88
+ | Primary Label | Main knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.primary.label` |
89
+ | Secondary Code | Alternative knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.secondary.code` |
90
+ | Secondary Label | Alternative knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.secondary.label` |
91
+
92
+ **Possible Values:**
93
+ | Code | Label | Description |
94
+ |------|-------|-------------|
95
+ | `-1` | Abstain | Unable to determine |
96
+ | `1` | Factual | Basic elements to learn or solve problems |
97
+ | `2` | Conceptual | Interrelationships between basic elements within larger context |
98
+ | `3` | Procedural | Methods and techniques in the discipline |
99
+ | `4` | Metacognitive | Awareness of how learning works in relation to oneself |
100
+
101
+ ### Cognitive Processing Level
102
+ Assesses the learning and thinking skill levels demonstrated by the document author:
103
+
104
+ | Component | Description | Path |
105
+ |-----------|-------------|------|
106
+ | Primary Code | Main cognitive process code | `eai_taxonomy.bloom_cognitive_process.primary.code` |
107
+ | Primary Label | Main cognitive process label | `eai_taxonomy.bloom_cognitive_process.primary.label` |
108
+ | Secondary Code | Alternative cognitive process code | `eai_taxonomy.bloom_cognitive_process.secondary.code` |
109
+ | Secondary Label | Alternative cognitive process label | `eai_taxonomy.bloom_cognitive_process.secondary.label` |
110
+
111
+ **Possible Values:**
112
+ | Code | Label | Description |
113
+ |------|-------|-------------|
114
+ | `-1` | Abstain | Unable to determine |
115
+ | `1` | Remember | Retrieve relevant knowledge from memory |
116
+ | `2` | Understand | Determine meaning of instructional messages |
117
+ | `3` | Apply | Use a procedure in a given situation |
118
+ | `4` | Analyze | Break materials into components and determine relationships |
119
+ | `5` | Evaluate | Make judgments based on criteria and standards |
120
+ | `6` | Create | Create new or original work |
121
+
122
+ </details>
123
+
124
+ <details>
125
+ <summary><strong>Document Characteristics</strong></summary>
126
+
127
+ ### Document Type v1
128
+ In-house classification of common web document types and formats:
129
+
130
+ | Component | Description | Path |
131
+ |-----------|-------------|------|
132
+ | Primary Code | Main document type code | `eai_taxonomy.document_type_v1.primary.code` |
133
+ | Primary Label | Main document type label | `eai_taxonomy.document_type_v1.primary.label` |
134
+ | Secondary Code | Alternative document type code | `eai_taxonomy.document_type_v1.secondary.code` |
135
+ | Secondary Label | Alternative document type label | `eai_taxonomy.document_type_v1.secondary.label` |
136
+
137
+ **Possible Values:**
138
+ | Code | Label | Examples |
139
+ |------|-------|----------|
140
+ | `-1` | Abstain | Unable to classify |
141
+ | `1` | News/Editorial | CNN articles, opinion columns |
142
+ | `2` | Academic/Research | ArXiv papers, research articles |
143
+ | `3` | Reference/Encyclopedic/Educational | FAQs, Wikipedia entries |
144
+ | `4` | Code/Software | GitHub repos, code examples |
145
+ | `5` | Social/Forum | Conversation threads, Q&A boards |
146
+ | `6` | Promotional/Advertisement | Product pages, calls to action |
147
+ | `7` | Search/Directory/Bibliography | Link pages, search results |
148
+ | `8` | Adult/Pornographic | Adult content |
149
+ | `9` | Personal/Misc | Blogs, user profiles |
150
+ | `10` | Machine-Generated | Lorem ipsum, garbled text |
151
+ | `11` | Legal/Regulatory | Contracts, terms of service |
152
+ | `12` | Government/Political | Legislation, press releases |
153
+ | `13` | Literary/Creative | Poems, short stories |
154
+ | `14` | Reviews/Critiques | Film critiques, product reviews |
155
+ | `15` | E-Commerce/Marketplace | eBay listings, Amazon pages |
156
+ | `16` | Images/Videos/Audio | YouTube videos, Imgur pages |
157
+ | `17` | Other/Unclassified | Documents that resist classification |
158
+
159
+ ### Document Type v2
160
+ Updated classification based on WebOrganizer taxonomy with refined categories for improved document classification accuracy:
161
+
162
+ | Component | Description | Path |
163
+ |-----------|-------------|------|
164
+ | Primary Code | Main document type code (v2) | `eai_taxonomy.document_type_v2.primary.code` |
165
+ | Primary Label | Main document type label (v2) | `eai_taxonomy.document_type_v2.primary.label` |
166
+ | Secondary Code | Alternative document type code (v2) | `eai_taxonomy.document_type_v2.secondary.code` |
167
+ | Secondary Label | Alternative document type label (v2) | `eai_taxonomy.document_type_v2.secondary.label` |
168
+
169
+ **Complete Value Mapping:**
170
+ | Code | Label | Examples |
171
+ |------|-------|----------|
172
+ | `-1` | Abstain | Documents requiring human review |
173
+ | `1` | About (Org.) | Company about pages, mission statements |
174
+ | `2` | About (Personal) | Personal bios, LinkedIn profiles |
175
+ | `3` | Academic Writing | Research papers, abstracts, dissertations |
176
+ | `4` | Audio Transcript | Interview transcripts, court records, captions |
177
+ | `5` | Comment Section | Reddit threads, blog comments |
178
+ | `6` | Content Listing | Site maps, product catalogs, directory listings |
179
+ | `7` | Creative Writing | Song lyrics, novel excerpts, poetry |
180
+ | `8` | Documentation | API docs, README files, user manuals |
181
+ | `9` | FAQ | FAQ pages, Q&A lists |
182
+ | `10` | Knowledge Article | Wikipedia articles, Britannica entries |
183
+ | `11` | Legal Notices | Privacy policies, license agreements, terms of service |
184
+ | `12` | Listicle | Buzzfeed-style articles, "Top 10" lists |
185
+ | `13` | News (Org.) | Government blog posts, corporate announcements |
186
+ | `14` | News Article | Newspaper articles, CNN content, breaking news |
187
+ | `15` | Nonfiction Writing | Editorials, obituaries, memoirs, opinion pieces |
188
+ | `16` | Personal Blog | Personal journals, diary entries, lifestyle blogs |
189
+ | `17` | Product Page | Product descriptions, course offerings, sales pages |
190
+ | `18` | Q&A Forum | Quora posts, Stack Exchange discussions |
191
+ | `19` | Spam / Ads | SEO keyword stuffing, promotional spam |
192
+ | `20` | Structured Data | Datasheets, glossaries, JSON files, databases |
193
+ | `21` | Customer Support | Help articles, troubleshooting guides |
194
+ | `22` | Truncated | Paywalled sites, image galleries, partial content |
195
+ | `23` | Tutorial | Cooking recipes, WikiHow pages, step-by-step guides |
196
+ | `24` | User Review | Yelp reviews, TripAdvisor feedback, product reviews |
197
+ | `25` | Other/Unclassified | Miscellaneous documents not fitting other categories |
198
+
199
+ ### Extraction Artifacts
200
+ Assessment of technical extraction quality, identifying issues from HTML-to-text conversion:
201
+
202
+ | Component | Description | Path |
203
+ |-----------|-------------|------|
204
+ | Primary Code | Main extraction artifact code | `eai_taxonomy.extraction_artifacts.primary.code` |
205
+ | Primary Label | Main extraction artifact label | `eai_taxonomy.extraction_artifacts.primary.label` |
206
+ | Secondary Code | Alternative extraction artifact code | `eai_taxonomy.extraction_artifacts.secondary.code` |
207
+ | Secondary Label | Alternative extraction artifact label | `eai_taxonomy.extraction_artifacts.secondary.label` |
208
+
209
+ **Possible Values:**
210
+ | Code | Label | Description |
211
+ |------|-------|-------------|
212
+ | `-1` | Abstain | Unable to determine |
213
+ | `0` | No Artifacts | Clean text with no leftover HTML or irrelevant elements |
214
+ | `1` | Leftover HTML | HTML/code artifacts remaining after extraction |
215
+ | `2` | Text Extraction Errors | Broken math expressions, encoding errors, improperly parsed tables |
216
+ | `3` | Irrelevant Content | Headers, footers, nav menus extracted by mistake |
217
+ | `4` | Indeterminate | Insufficient content to judge |
218
+
219
+ ### Missing Content
220
+ Assessment of content completeness and extraction success:
221
+
222
+ | Component | Description | Path |
223
+ |-----------|-------------|------|
224
+ | Primary Code | Main missing content code | `eai_taxonomy.missing_content.primary.code` |
225
+ | Primary Label | Main missing content label | `eai_taxonomy.missing_content.primary.label` |
226
+ | Secondary Code | Alternative missing content code | `eai_taxonomy.missing_content.secondary.code` |
227
+ | Secondary Label | Alternative missing content label | `eai_taxonomy.missing_content.secondary.label` |
228
+
229
+ **Possible Values:**
230
+ | Code | Label | Description |
231
+ |------|-------|-------------|
232
+ | `-1` | Abstain | Unable to determine |
233
+ | `0` | No Missing Content | Complete and coherent text |
234
+ | `1` | Truncated Snippets | Obvious "...", incomplete paragraphs, cut-off text |
235
+ | `2` | Click Here References | "Download here", "Click here" without linked content |
236
+ | `3` | Incoherent Flow | Unreadable or illogical flow due to missing context |
237
+ | `4` | Missing Images or Figures | Placeholders or references to missing visual content |
238
+ | `5` | Missing Referenced Data | References to absent tables/datasets (e.g., "See Table 3") |
239
+ | `6` | Indeterminate | Insufficient content to judge |
240
+
241
+ ### Text Structure Information
242
+
243
+ | Field | Type | Description | Path |
244
+ |-------|------|-------------|------|
245
+ | Line Start Indices | `List[Int32]` | Starting indices of each line | `line_start_n_end_idx.line_start_idx` |
246
+ | Line End Indices | `List[Int32]` | Ending indices of each line | `line_start_n_end_idx.line_end_idx` |
247
+
248
+ </details>
249
+
250
+ <details>
251
+ <summary><strong>Content Quality Dimensions</strong></summary>
252
+
253
+ Quality assessment inspired by NaturalReasoning and FineWeb efforts to categorize web data by information sophistication.
254
+
255
+ ### Reasoning Depth
256
+ Assesses the complexity and sophistication of logical reasoning in the document:
257
+
258
+ | Component | Description | Path |
259
+ |-----------|-------------|------|
260
+ | Primary Code | Main reasoning depth code | `eai_taxonomy.reasoning_depth.primary.code` |
261
+ | Primary Label | Main reasoning depth label | `eai_taxonomy.reasoning_depth.primary.label` |
262
+ | Secondary Code | Alternative reasoning depth code | `eai_taxonomy.reasoning_depth.secondary.code` |
263
+ | Secondary Label | Alternative reasoning depth label | `eai_taxonomy.reasoning_depth.secondary.label` |
264
+
265
+ **Possible Values:**
266
+ | Code | Label | Description |
267
+ |------|-------|-------------|
268
+ | `-1` | Abstain | Unable to determine |
269
+ | `1` | No Reasoning | Facts present but no evidence of reasoning |
270
+ | `2` | Basic Reasoning | Basic analysis with minimal explanation and summarization |
271
+ | `3` | Intermediate Reasoning | Some logical steps connecting ideas and structured thinking |
272
+ | `4` | Advanced Reasoning | Multi-step reasoning and thorough analysis with well-developed explanations |
273
+ | `5` | Exceptional Reasoning | Novel abstractions, theoretical frameworks, long chain-of-thought, original insights, or proofs |
274
+ | `6` | Indeterminate | Insufficient context to judge |
275
+
276
+ ### Technical Correctness
277
+ Evaluates the accuracy and precision of technical information:
278
+
279
+ | Component | Description | Path |
280
+ |-----------|-------------|------|
281
+ | Primary Code | Main technical correctness code | `eai_taxonomy.technical_correctness.primary.code` |
282
+ | Primary Label | Main technical correctness label | `eai_taxonomy.technical_correctness.primary.label` |
283
+ | Secondary Code | Alternative technical correctness code | `eai_taxonomy.technical_correctness.secondary.code` |
284
+ | Secondary Label | Alternative technical correctness label | `eai_taxonomy.technical_correctness.secondary.label` |
285
+
286
+ **Possible Values:**
287
+ | Code | Label | Description |
288
+ |------|-------|-------------|
289
+ | `-1` | Abstain | Unable to determine |
290
+ | `1` | Technically Flawed | Significant errors undermining content validity |
291
+ | `2` | Partially Correct | Some correctness but contains flaws, omissions, or errors |
292
+ | `3` | Mostly Correct | Technical correctness with minor flaws or incomplete explanations |
293
+ | `4` | Highly Correct | High technical correctness with precise definitions and clear explanations |
294
+ | `5` | Exceptionally Correct | Exceptional technical correctness with formal proofs and flawless content |
295
+ | `6` | Not Applicable/Indeterminate | No technical content or insufficient context |
296
+
297
+ ### Education Level
298
+ Assesses the appropriate educational background required to comprehend the content:
299
+
300
+ | Component | Description | Path |
301
+ |-----------|-------------|------|
302
+ | Primary Code | Main education level code | `eai_taxonomy.education_level.primary.code` |
303
+ | Primary Label | Main education level label | `eai_taxonomy.education_level.primary.label` |
304
+ | Secondary Code | Alternative education level code | `eai_taxonomy.education_level.secondary.code` |
305
+ | Secondary Label | Alternative education level label | `eai_taxonomy.education_level.secondary.label` |
306
+
307
+ **Possible Values:**
308
+ | Code | Label | Description |
309
+ |------|-------|-------------|
310
+ | `-1` | Abstain | Unable to determine |
311
+ | `1` | General Audience | Accessible to anyone with basic literacy; simple terms |
312
+ | `2` | High School Level | Requires high school education; specialized terminology explained for non-experts |
313
+ | `3` | Undergraduate Level | Requires college education; uses specialized terminology and assumes background knowledge |
314
+ | `4` | Graduate/Expert Level | Requires graduate education or domain expertise; assumes deep background knowledge |
315
+ | `5` | Indeterminate | Insufficient content to judge educational level |
316
+
317
+ </details>
318
+
319
+ <details>
320
+ <summary><strong>Metadata</strong></summary>
321
+
322
+ ## Metadata Structure
323
+
324
+ The `metadata` field contains a nested structure with web archive information:
325
+
326
+ | Field | Type | Description | Path |
327
+ |-------|------|-------------|------|
328
+ | **URL Information** | | | |
329
+ | URL | `String` | Original URL of the document | `metadata.url` |
330
+ | Source Domain | `String` | Domain name of the source | `metadata.source_domain` |
331
+ | Snapshot ID | `String` | Identifier for the web archive snapshot | `metadata.snapshot_id` |
332
+ | **WARC Metadata** | | WARC (Web ARChive) format metadata | |
333
+ | Content Length | `String` | Size of the content | `metadata.warc_metadata.Content-Length` |
334
+ | Content Type | `String` | MIME type of the content | `metadata.warc_metadata.Content-Type` |
335
+ | Block Digest | `String` | Checksum of the WARC block | `metadata.warc_metadata.WARC-Block-Digest` |
336
+ | Concurrent To | `String` | Related WARC records | `metadata.warc_metadata.WARC-Concurrent-To` |
337
+ | Date | `String` | Timestamp of the crawl | `metadata.warc_metadata.WARC-Date` |
338
+ | IP Address | `String` | Source server IP address | `metadata.warc_metadata.WARC-IP-Address` |
339
+ | Payload Type | `String` | Identified content type | `metadata.warc_metadata.WARC-Identified-Payload-Type` |
340
+ | Payload Digest | `String` | Checksum of the payload | `metadata.warc_metadata.WARC-Payload-Digest` |
341
+ | Record ID | `String` | Unique WARC record identifier | `metadata.warc_metadata.WARC-Record-ID` |
342
+ | Target URI | `String` | Original target URL | `metadata.warc_metadata.WARC-Target-URI` |
343
+ | Truncated | `String` | Truncation status | `metadata.warc_metadata.WARC-Truncated` |
344
+ | Type | `String` | WARC record type | `metadata.warc_metadata.WARC-Type` |
345
+ | Warcinfo ID | `String` | Associated warcinfo record | `metadata.warc_metadata.WARC-Warcinfo-ID` |
346
+ | **Additional Info** | | | |
347
+ | WARC Info | `String` | Additional WARC information | `metadata.warc_info` |
348
+
349
+ </details>
350
+
351
+ <details>
352
+ <summary><strong>Quality Signals</strong></summary>
353
+
354
+ The dataset includes two comprehensive quality assessment frameworks:
355
+
356
+ ## Red Pajama v2 Quality Metrics
357
+
358
+ Text quality indicators derived from the Red Pajama v2 filtering pipeline:
359
+
360
+ ### Content Structure Metrics
361
+ | Metric | Description | Path |
362
+ |--------|-------------|------|
363
+ | Original Length | Original document length | `quality_signals.red_pajama_v2.ccnet_original_length` |
364
+ | Original Lines | Number of lines in original document | `quality_signals.red_pajama_v2.ccnet_original_nlines` |
365
+ | Sentence Count | Total sentence count | `quality_signals.red_pajama_v2.rps_doc_num_sentences` |
366
+ | Word Count | Total word count | `quality_signals.red_pajama_v2.rps_doc_word_count` |
367
+ | Mean Word Length | Average word length | `quality_signals.red_pajama_v2.rps_doc_mean_word_length` |
368
+
369
+ ### Language Quality Metrics
370
+ | Metric | Description | Path |
371
+ |--------|-------------|------|
372
+ | Stop Word Fraction | Proportion of stop words | `quality_signals.red_pajama_v2.rps_doc_stop_word_fraction` |
373
+ | Unique Words Fraction | Fraction of unique words | `quality_signals.red_pajama_v2.rps_doc_frac_unique_words` |
374
+ | All Caps Words | Fraction of words in all capitals | `quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words` |
375
+ | Non-Alphabetic Words | Fraction of non-alphabetic words | `quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words` |
376
+ | Unigram Entropy | Entropy measure of word distribution | `quality_signals.red_pajama_v2.rps_doc_unigram_entropy` |
377
+
378
+ ### Content Pattern Analysis
379
+ | Metric | Description | Path |
380
+ |--------|-------------|------|
381
+ | Curly Bracket Density | Curly bracket density (code indicator) | `quality_signals.red_pajama_v2.rps_doc_curly_bracket` |
382
+ | Symbol-to-Word Ratio | Symbol-to-word ratio | `quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio` |
383
+ | Ellipsis Line Endings | Lines ending with ellipsis | `quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis` |
384
+ | Lorem Ipsum Detection | Lorem ipsum text detection | `quality_signals.red_pajama_v2.rps_doc_lorem_ipsum` |
385
+ | Offensive Content | Potentially offensive content detection | `quality_signals.red_pajama_v2.rps_doc_ldnoobw_words` |
386
+ | UT1 Blacklist | UT1 blacklist filtering score | `quality_signals.red_pajama_v2.rps_doc_ut1_blacklist` |
387
+
388
+ ### Duplication Detection
389
+ | Metric | Description | Path |
390
+ |--------|-------------|------|
391
+ | 5-gram Duplication | Character-level duplication for 5-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams` |
392
+ | 6-gram Duplication | Character-level duplication for 6-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams` |
393
+ | 7-gram Duplication | Character-level duplication for 7-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams` |
394
+ | 8-gram Duplication | Character-level duplication for 8-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams` |
395
+ | 9-gram Duplication | Character-level duplication for 9-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams` |
396
+ | 10-gram Duplication | Character-level duplication for 10-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams` |
397
+ | Top 2-gram Coverage | Most frequent 2-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram` |
398
+ | Top 3-gram Coverage | Most frequent 3-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram` |
399
+ | Top 4-gram Coverage | Most frequent 4-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram` |
400
+
401
+ ### Domain Importance Scores
402
+ | Metric | Description | Path |
403
+ |--------|-------------|------|
404
+ | Books Importance | Similarity to book content | `quality_signals.red_pajama_v2.rps_doc_books_importance` |
405
+ | Books Importance (Length Corrected) | Length-corrected books similarity | `quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction` |
406
+ | OpenWebText Importance | Similarity to OpenWebText | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance` |
407
+ | OpenWebText Importance (Length Corrected) | Length-corrected OpenWebText similarity | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction` |
408
+ | Wikipedia Importance | Similarity to Wikipedia | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance` |
409
+ | Wikipedia Importance (Length Corrected) | Length-corrected Wikipedia similarity | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction` |
410
+
411
+ ## FastText Classification Scores
412
+
413
+ Domain and content type classification probabilities:
414
+
415
+ | Metric | Description | Path |
416
+ |--------|-------------|------|
417
+ | DCLM Score | DataComp-LM classifier score | `quality_signals.fasttext.dclm` |
418
+ | English Confidence | English language confidence | `quality_signals.fasttext.english` |
419
+ | Educational Content | Educational content approximation | `quality_signals.fasttext.fineweb_edu_approx` |
420
+ | General Math | General mathematics content | `quality_signals.fasttext.eai_general_math` |
421
+ | Web Math | OWM Web-based mathematics content | `quality_signals.fasttext.eai_open_web_math` |
422
+ | Code Content | Code content detection | `quality_signals.fasttext.eai_web_code` |
423
+
424
+ </details>
425
+
426
+ ## How to Load the Dataset
427
+
428
+ This section provides examples of how to load the `EssentialAI/eai-taxonomy-stem-w-dclm` dataset using different Python libraries and frameworks.
429
+
430
+ ### Using Hugging Face Datasets (Standard Method)
431
+
432
+ The simplest way to load the dataset is using the Hugging Face `datasets` library:
433
+
434
+ ```python
435
+ from datasets import load_dataset
436
+
437
+ # Load the entire dataset
438
+ dataset = load_dataset("EssentialAI/eai-taxonomy-stem-w-dclm")
439
+
440
+ # View dataset structure
441
+ print(dataset)
442
+ print(f"Number of examples: {len(dataset['train'])}")
443
+ ```
444
+
445
+ You can also load the dataset in streaming mode to avoid downloading the entire dataset at once:
446
+
447
+ ```python
448
+ from datasets import load_dataset
449
+
450
+ # Load in streaming mode
451
+ dataset = load_dataset("EssentialAI/eai-taxonomy-stem-w-dclm", streaming=True)
452
+ data_stream = dataset["train"]
453
+
454
+ # Iterate through examples
455
+ for example in data_stream.take(5):
456
+ print(example)
457
+ ```
458
+
459
+ ### Using PySpark
460
+
461
+ For large-scale distributed processing, you can load the dataset using PySpark with the `pyspark_huggingface` library:
462
+
463
+ ```python
464
+ # First install the required library:
465
+ # pip install pyspark_huggingface
466
+
467
+ import pyspark_huggingface
468
+ from pyspark.sql import SparkSession
469
+
470
+ # Initialize Spark session
471
+ spark = SparkSession.builder.appName("EAI-Taxonomy-STEM-w-DCLM").getOrCreate()
472
+
473
+ # Load the dataset using the "huggingface" data source
474
+ df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-stem-w-dclm")
475
+
476
+ # Basic dataset exploration
477
+ print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
478
+ df.show(10)
479
+ df.printSchema()
480
+
481
+ # Load only specific columns for efficiency
482
+ df_subset = (
483
+ spark.read.format("huggingface")
484
+ .option("columns", '["column1", "column2"]') # Replace with actual column names
485
+ .load("EssentialAI/eai-taxonomy-stem-w-dclm")
486
+ )
487
+
488
+ # Run SQL queries on the dataset
489
+ df.createOrReplaceTempView("eai_taxonomy_stem_w_dclm_dataset")
490
+ result = spark.sql("""
491
+ SELECT COUNT(*) as total_examples
492
+ FROM eai_taxonomy_stem_w_dclm_dataset
493
+ """)
494
+ result.show()
495
+ ```
496
+
497
+ ### Using Daft
498
+
499
+ Daft provides a modern DataFrame library optimized for machine learning workloads. You can load the dataset directly from Hugging Face:
500
+
501
+ ```python
502
+ import daft
503
+
504
+ # Load the entire dataset
505
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-stem-w-dclm")
506
+
507
+ # Basic exploration
508
+ print("Dataset schema:")
509
+ df.schema()
510
+
511
+ print("First 5 rows:")
512
+ df.show(5)
513
+ ```
514
+
515
+ If you need to access private datasets or use authentication:
516
+
517
+ ```python
518
+ import daft
519
+ from daft.io import IOConfig, HTTPConfig
520
+
521
+ io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
522
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-stem-w-dclm", io_config=io_config)
523
+ ```
524
+
525
+ ### Installation Requirements
526
+
527
+ Make sure you have the required libraries installed:
528
+
529
+ ```bash
530
+ # For Hugging Face datasets
531
+ pip install datasets
532
+
533
+ # For PySpark with Hugging Face integration
534
+ pip install pyspark_huggingface
535
+
536
+ # For Daft
537
+ pip install daft
538
+ ```
539
+
540
+ ## 📝 Citation
541
+
542
+ ```bibtex
543
+ [Citation information to be added]
544
+ ```