---
license: cc-by-nc-4.0
dataset_info:
features:
- name: image
dtype: image
- name: annotations
list:
- name: class_id
dtype: int64
- name: segmentation
sequence:
sequence:
sequence: float64
splits:
- name: train
num_bytes: 103638330.0
num_examples: 82
- name: valid
num_bytes: 26074864.0
num_examples: 21
download_size: 124824112
dataset_size: 129713194.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: valid
path: data/valid-*
---
---
# Vision-Guided Robotic System for Automatic Fish Quality Grading and Packaging
This dataset (recorded with a Realsense D456 camera), associated with our work accepted in the **IEEE/CAA Journal of Automatica Sinica**, includes images and corresponding instance segmentation annotations (in YOLO format) of hake fish steaks on an industrial conveyor belt. It also provides BAG files for two quality grades of fish steaks (A and B), where A-grade steaks are generally larger.
The paper details our use of YOLOv8 instance segmentation (check [**HERE**](https://docs.ultralytics.com/models/yolov8/) how to train and validate the model) to isolate the fish steaks and the subsequent measurement of their size using the depth data from the BAG files.
π€ [Paper]** Coming soon ...**
## ποΈ BAG files & trained segmentation model:
Please first read the associated paper to understand the proposed pipeline.
The BAG files for A and B grades, as well as the weights of the trained segmentation model (best.pt and last.pt), can be found [[**HERE**].](https://fbk-my.sharepoint.com/:f:/g/personal/mmekhalfi_fbk_eu/ElmBGeHUIwpPveSRrfd7qu4BQpAiWsOo70m8__V875yggw?e=1L0iTT).
The segmentation model is designed to segment fish samples. The BAG files are intended for testing purposes. For example, you could use the provided model weights to segment the RGB images within the BAG files and then measure their size based on the depth data.
For clarity, a simplified code snippet for measuring steaks' (metric) perimeter is provided below. You can repurpose this for your specific task:
```python
import pyrealsense2 as rs
import numpy as np
import cv2
import copy
import time
import os
import torch
from ultralytics import YOLO
from random import randint
import math
import matplotlib.pyplot as plt
class ARC:
def __init__(self):
bag = r'Class_A_austral.bag' # path of the bag file
self.start_frame = 0 # start from the this frame to allow the sensor to adjust
# ROI coordinates are determined from the depth images (checked visually and fixed)
self.x1_roi, self.x2_roi = 250, 1280
self.y1_roi, self.y2_roi = 0, 470
self.delta = 5 # to discard steaks occluded along the borders of the image
self.area_tresh = 80
self.bag = bag
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# load and run model
self.my_model = YOLO('./weights/last.pt') # path of the bag file
self.pipeline = rs.pipeline()
config = rs.config()
config.enable_device_from_file(bag, False)
config.enable_all_streams()
profile = self.pipeline.start(config)
device = profile.get_device()
playback = device.as_playback()
playback.set_real_time(False)
#################### POSTPROCESSING ########################################
self.fill_filter = rs.hole_filling_filter()
##############################################################################
def video(self):
align_to = rs.stream.color
align = rs.align(align_to)
t_init_wait_for_frames = time.time()
for i in range(self.start_frame):
self.pipeline.wait_for_frames()
t_end_wait_for_frames = time.time()
i = self.start_frame
while True:
t_init_all = time.time()
frames = self.pipeline.wait_for_frames()
aligned_frames = align.process(frames)
color_frame = aligned_frames.get_color_frame()
depth_frame = aligned_frames.get_depth_frame()
self.color_intrin = color_frame.profile.as_video_stream_profile().intrinsics
# postprocessing, hole filling of depth noise
depth_frame = self.fill_filter.process(depth_frame).as_depth_frame()
# if raw depth is used
self.depth_frame = depth_frame
# Convert color_frame to numpy array to render image in opencv
color_image = np.asanyarray(color_frame.get_data())
rgb_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
results = list(self.my_model(rgb_image, conf=0.7, retina_masks=True, verbose=False, device=self.device))
result = results[0] # The results list may have multiple values, one for each detected object. Because in this example we have only one object in each image, we take the first list item.
if result.masks == None: # Proceed only if there are detected steaks
print('---------> Frame {}: No steaks detected'.format(i))
i += 1
else:
print('---------> Frame {} >> Processing {} steak(s)'.format(i, len(result.masks)))
masks = result.masks.data
masks = masks.detach().cpu()
# resize masks to image size (yolov8 outputs padded masks on top and bottom stripes that are larger in width wrt input image)
padding_width = int((masks.shape[1] - rgb_image.shape[0])/2)
masks = masks[:, padding_width:masks.shape[1]-padding_width, :]
# filter out the masks that lie at the predefined (above) ROI (e.g., occluded fish steaks, because they cannot be graded if not whole)
id_del = []
for id_, msk in enumerate(masks):
x_coord = np.nonzero(msk)[:, 1]
y_coord = np.nonzero(msk)[:, 0]
# ROI
x_del1 = x_coord <= self.x1_roi + self.delta
x_del2 = x_coord >= self.x2_roi - self.delta
if True in x_del1 or True in x_del2:
id_del.append(id_)
del x_del1, x_del2
id_keep = list(range(masks.shape[0]))
id_keep = [item for item in id_keep if item not in id_del]
masks = masks[id_keep]
# calculate the perimeter of each object ############################################################################################ PERIMETER
polygons = result.masks.xyn
# scale the yolo format polygon coordinates by image width and height
for pol in polygons:
for point_id in range(len(pol)):
pol[point_id][0] *= rgb_image.shape[1]
pol[point_id][1] *= rgb_image.shape[0]
polygons = [polygons[item] for item in id_keep]
t_init_perimeter = time.time()
perimeters = [0]*len(polygons)
for p in range(len(polygons)): # the polygon (mask) id
step = 5 # dist measurement step between polygon points
for point_id in range(0, len(polygons[p])-step, step):
x1 = round(polygons[p][point_id][0])
y1 = round(polygons[p][point_id][1])
x2 = round(polygons[p][point_id + step][0])
y2 = round(polygons[p][point_id + step][1])
# calculate_distance between polygon points
dist = self.calculate_distance(x1, y1, x2, y2)
# print('> x1, y1, x2, y2: {}, {}, {}, {}'.format(x1, y1, x2, y2), '--- distance between the 2 points: {0:.10} cm'.format(dist))
# # visualise the points on the image
# image_points = copy.deepcopy(rgb_image)
# image_points = cv2.circle(image_points, (x1,y1), radius=3, color=(0, 0, 255), thickness=-1)
# image_points = cv2.circle(image_points, (x2,y2), radius=3, color=(0, 255, 0), thickness=-1)
# image_points = cv2.putText(image_points, 'Distance {} cm'.format(dist), org = (50, 50) , fontFace = cv2.FONT_HERSHEY_SIMPLEX , fontScale = 1, color = (255, 0, 0) , thickness = 2)
# cv2.imshow('image_points' + str(id_), image_points)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# accumulate the distance in cm
perimeters[p] += dist
perimeters[p] = round(perimeters[p], 2)
del dist, x1, y1, x2, y2
i += 1
def calculate_distance(self, x1, y1, x2, y2):
color_intrin = self.color_intrin
udist = self.depth_frame.get_distance(x1, y1)
vdist = self.depth_frame.get_distance(x2, y2)
# print udist, vdist
point1 = rs.rs2_deproject_pixel_to_point(color_intrin, [x1, y1], udist)
point2 = rs.rs2_deproject_pixel_to_point(color_intrin, [x2, y2], vdist)
dist = math.sqrt(math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1],2) + math.pow(point1[2] - point2[2], 2))
return round(dist*100, 2) # multiply by 100 to convert m to cm
if __name__ == '__main__':
ARC().video()
```
## ποΈ Data Instances