# coding=utf-8 """COSUJU: The Court Summaries and Judgements Dataset.""" from __future__ import absolute_import, division, print_function import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @InProceedings{huggingface:dataset, title = {CoSuJu 500+ Court Judegements and Summaries for Machine Text Summarization}, authors = {Busani Ndlovu, Luke Jordan}, year = {2021} } """ # TODO: Complete description _DESCRIPTION = """\ Court Summaries and Judgements (CoSuJu) """ _URL = 'https://github.com/FRTNX/ml-data-scraper/blob/main/dataset/' _URLS = { 'train': _URL + 'mini-train-v1.0.json' } class CosujuConfig(datasets.BuilderConfig): """BuilderConfig for COSUJU.""" def __init__(self, **kwargs): """BuilderConfig for COSUJU. Args: **kwargs: keyword arguments forwarded to super. """ super(CosujuConfig, self).__init__(**kwargs) class Cosuju(datasets.GeneratorBasedBuilder): """COSUJU: The Court Summaries and Judgements Dataset. Version 1.0.0""" BUILDER_CONFIGS = [ CosujuConfig( name='plain_text', version=datasets.Version('1.0.0', ''), description='Plain text', ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'id': datasets.Value('string'), 'title': datasets.Value('string'), 'url': datasets.Value('string'), 'year': datasets.Value('string'), 'update_date': datasets.Value('string'), 'summary_document': datasets.features.Sequence( { 'filename': datasets.Value('string'), 'file_url': datasets.Value('string'), 'file_content': datasets.Value('string') } ), 'judgement_document': datasets.features.Sequence( { 'filename': datasets.Value('string'), 'file_url': datasets.Value('string'), 'file_content': datasets.Value('string') } ), } ), supervised_keys=None, homepage='https://github.com/FRTNX/ml-data-scraper', citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info('generating examples from = %s', filepath) with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) result = { 'id': data['id'], 'title': data['title'], 'url': data['url'], 'year': data['year'], 'update_date': data['update_date'] } # as some court decisions have no summaries, may filter these out in future for prop in ['summary_document', 'judgement_document']: if data[prop]: result[prop] = data[prop] else: result[prop] = { 'filename': '', 'file_url': '', 'file_content': '' } yield id_, result