FederCO23 commited on
Commit
995e426
Β·
verified Β·
1 Parent(s): a669774

Create README.md

Browse files

Initial upload of SolarPlantsBrazil dataset

- Added 544 RGB+NIR GeoTIFF tiles with binary segmentation masks
- Organized into train, val, and test splits
- Included Dataset Card with description, usage instructions, and citation

Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-segmentation
5
+ - object-detection
6
+ tags:
7
+ - satellite-imagery
8
+ - remote-sensing
9
+ - semantic-segmentation
10
+ - photovoltaic
11
+ - torchgeo
12
+ pretty_name: Solar Plants Brazil (semantic segmentation)
13
+ size_categories:
14
+ - n<1K
15
+ ---
16
+
17
+ # πŸ›°οΈ Solar Plants Brazil
18
+
19
+ **Solar Plants Brazil** is a geospatial dataset for **binary semantic segmentation** of photovoltaic (PV) solar power stations in satellite imagery. It consists of multi-spectral image tiles (including near-infrared) with pixel-level annotations indicating the presence of solar panels. This dataset enables training and evaluating deep learning models that automatically detect solar farm installations from overhead imagery, supporting applications in renewable energy mapping and remote sensing.
20
+
21
+ ---
22
+
23
+ ## Dataset Overview
24
+
25
+ - **Purpose**: Identify photovoltaic solar plant locations via binary segmentation (panel vs. background) in satellite images
26
+ - **Imagery**: 4-band (RGB + Near-Infrared) GeoTIFF tiles at 256Γ—256 pixels each (float32 pixel values)
27
+ - **Labels**: Corresponding binary mask for each image (1 = solar panel, 0 = no panel)
28
+ - **Volume**: 272 image/mask pairs in total, split into training, validation, and test sets (201 train, 35 val, 36 test)
29
+ - **Geography**: Tiles are from various locations across Brazil, focusing on known solar farm sites
30
+ - **Metadata**: GeoTIFF files include spatial reference (CRS) and geolocation
31
+
32
+ ---
33
+
34
+ ## πŸ“ Dataset Structure
35
+
36
+ ```
37
+ solar-plants-brazil/
38
+ β”œβ”€β”€ train/
39
+ β”‚ β”œβ”€β”€ input/ # 256x256 RGBNIR images (GeoTIFF)
40
+ β”‚ └── labels/ # 256x256 binary masks (GeoTIFF)
41
+ β”œβ”€β”€ val/
42
+ β”‚ β”œβ”€β”€ input/
43
+ β”‚ └── labels/
44
+ └── test/
45
+ β”œβ”€β”€ input/
46
+ └── labels/
47
+ ```
48
+
49
+ Each image is named `img(<ID>).tif` with its corresponding mask `target(<ID>).tif`. All images are pre-cropped to 256Γ—256 pixels. The masks are binary, with `1` representing solar panels.
50
+
51
+ ---
52
+
53
+ ## πŸ”§ TorchGeo Integration
54
+
55
+ This dataset is integrated with the [TorchGeo](https://github.com/microsoft/torchgeo) library and can be loaded as:
56
+
57
+ ```python
58
+ from torchgeo.datasets import SolarPlantsBrazil
59
+
60
+ dataset = SolarPlantsBrazil(split="train", root="data/", download=True)
61
+ sample = dataset[0]
62
+ image_tensor, mask_tensor = sample["image"], sample["mask"]
63
+ print(image_tensor.shape, mask_tensor.shape)
64
+ ```
65
+
66
+ This returns image tensors with 4 channels and single-channel binary masks.
67
+
68
+ ---
69
+
70
+ ## πŸ’‘ Use Cases
71
+
72
+ - Training segmentation models for solar farm detection
73
+ - Monitoring solar plant growth over time
74
+ - Infrastructure planning and spatial analytics
75
+ - Academic research on geospatial ML
76
+
77
+ ---
78
+
79
+ ## πŸ“š Related Resources
80
+
81
+ - 🌍 [Brazil Data Cube](https://data.inpe.br/bdc/web/en/home-page-2/)
82
+ - πŸ› οΈ [Data Wrangling Scripts](https://github.com/FederCO23/UCSD_MLBootcamp_Capstone/tree/main/5-Data_Wrangling)
83
+ - πŸ”— [Project Repository](https://github.com/FederCO23/UCSD_MLBootcamp_Capstone)
84
+
85
+ ---
86
+
87
+ ## πŸ“œ Citation
88
+
89
+ ```bibtex
90
+ @misc{solarplantsbrazil2024,
91
+ author = {Federico Bessi},
92
+ title = {Solar Plants Brazil: A Semantic Segmentation Dataset for Photovoltaic Panel Detection},
93
+ year = {2024},
94
+ howpublished = {Hugging Face Datasets},
95
+ url = {https://huggingface.co/datasets/FederCO23/solar-plants-brazil},
96
+ note = {Preprocessing and training code available at https://github.com/FederCO23/UCSD_MLBootcamp_Capstone}
97
+ }
98
+ ```
99
+
100
+ ---
101
+
102
+ ## πŸ™‹β€β™‚οΈ Contact
103
+
104
+ - **Creator**: Federico Bessi
105
+ - **Email**: [email protected]
106
+ - **LinkedIn**: [linkedin.com/in/federico-bessi](https://www.linkedin.com/in/federico-bessi)