FelicieGS commited on
Commit
724bb77
·
verified ·
1 Parent(s): 26a7517

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +252 -51
README.md CHANGED
@@ -1,51 +1,252 @@
1
- ---
2
- license: cc-by-4.0
3
- dataset_info:
4
- features:
5
- - name: file_name
6
- dtype: string
7
- - name: image
8
- dtype: image
9
- - name: slide_id
10
- dtype: string
11
- - name: tissue
12
- dtype:
13
- class_label:
14
- names:
15
- '0': Breast
16
- '1': Cervix
17
- '2': Colon
18
- '3': Heart
19
- '4': Kidney
20
- '5': Liver
21
- '6': Lung
22
- '7': LymphNode
23
- '8': Ovarian
24
- '9': Pancreatic
25
- '10': Prostate
26
- '11': Skin
27
- '12': Tonsil
28
- - name: cell_counts
29
- list: uint16
30
- - name: instance_map
31
- dtype: image
32
- - name: type_map
33
- dtype: image
34
- - name: Dice
35
- dtype: float16
36
- - name: Jaccard
37
- dtype: float16
38
- - name: bPQ
39
- dtype: float16
40
- splits:
41
- - name: train
42
- num_bytes: 37412008441.54
43
- num_examples: 154814
44
- download_size: 19071310668
45
- dataset_size: 37412008441.54
46
- configs:
47
- - config_name: default
48
- data_files:
49
- - split: train
50
- path: data/train-*
51
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - image-segmentation
5
+ - image-classification
6
+ tags:
7
+ - H&E
8
+ - WholeSlideImages
9
+ - CellTypeAnnotation
10
+ - Segmentation
11
+ - SpatialTranscriptomics
12
+ - Cancer
13
+ modalities: Image
14
+ pretty_name: STHELAR_20x
15
+ size_categories:
16
+ - 100K<n<1M
17
+ arxiv: https://doi.org/10.1101/2025.07.11.664123
18
+ libraries: Datasets
19
+ ---
20
+
21
+ # STHELAR dataset (20x)
22
+
23
+ **STHELAR** (*Spatial Transcriptomics and H&E histology for Large-scale Annotation Resource*) is a multi-tissue dataset designed for developing models capable of **predicting cell types directly from histological Hematoxylin & Eosin (H&E) whole slide images**. It integrates high-resolution spatial transcriptomics data with histology, to provide detailed segmentation masks and cell-type annotations.
24
+
25
+ ---
26
+
27
+ ## Available dataset versions
28
+
29
+ * **[`STHELAR_40x`](https://huggingface.co/datasets/FelicieGS/STHELAR_40x)** — 587,555 image patches at **40x** magnification
30
+ * **[`STHELAR_20x`](https://huggingface.co/datasets/FelicieGS/STHELAR_20x)** — 154,814 image patches at **20x** magnification
31
+
32
+ Both datasets share identical structures and metadata, differing only in image magnification levels.
33
+
34
+ ---
35
+
36
+ ## Detailed background
37
+
38
+ The STHELAR dataset is built from spatial transcriptomics (ST) data combined with Hematoxylin and Eosin (H&E) images, specifically sourced from the 10X Genomics platform using Xenium technology. The dataset comprises 27 human tissue FFPE slides, representing 13 distinct tissue types, including samples from 20 cancerous patients. Both modalities were aligned. Cell-type annotations were generated using the Tangram method, aligning the ST data with single-cell RNA reference atlases, and were subsequently refined via Leiden clustering combined with differential gene expression analysis. The aligned H&E images were divided into H&E patches, each accompanied by masks for nuclei segmentation and cell-type classification. Quality control steps were conducted, notably by comparing STHELAR segmentation masks with predictions from the pretrained CellViT model on the PanNuke dataset.
39
+
40
+ ---
41
+
42
+ ## Dataset description
43
+
44
+ Each dataset (**STHELAR_40x** or **STHELAR_20x**) consists of:
45
+
46
+ * **file_name**: Filename of the H&E image patch (e.g., breast_s0_10.png).
47
+ * **slide_id**: Identifier of the slide from which the patch was extracted (e.g., breast_s0).
48
+ * **tissue**: Tissue type, provided as categorical labels (e.g., Breast, Lung, Colon).
49
+ * **image**: RGB color images of size 256×256 pixels, extracted from H&E-stained whole-slide images at 40x or 20x magnification, with a 64-pixel overlap between adjacent patches.
50
+ * **instance_map**: Grayscale (16-bit) segmentation mask corresponding exactly to the H&E patch, with each nucleus uniquely labeled by a positive integer (0 represents background).
51
+ * **type_map**: Grayscale (8-bit) classification mask corresponding exactly to the H&E patch, where each nucleus is labeled according to its annotated cell type using the labels provided below (0 represents background).
52
+ * **cell_counts**: List of integers indicating the number of cells per cell type within the patch, ordered according to the cell type labels provided.
53
+ * **Dice**: Dice similarity coefficient measuring the overlap between the provided segmentation masks and segmentation predicted by a pre-trained CellViT model (SAM-H encoder).
54
+ * **Jaccard**: Jaccard index measuring segmentation accuracy relative to predictions made by a pre-trained CellViT model (SAM-H encoder).
55
+ * **bPQ**: Binary Panoptic Quality score, evaluating segmentation and instance-detection accuracy simultaneously, computed relative to predictions made by a pre-trained CellViT model (SAM-H encoder).
56
+
57
+ ---
58
+
59
+ ## Cell type labels
60
+
61
+ Cell type annotations are provided using the following consistent labels:
62
+
63
+
64
+ | **Label ID** | **Cell type** | **Description** |
65
+ |--------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 1 | T_NK | Includes T lymphocytes and natural killer (NK) cells. |
67
+ | 2 | B_Plasma | Combines B lymphocytes and plasma cells. |
68
+ | 3 | Myeloid | Comprises macrophages, monocytes, dendritic cells, neutrophils, mast cells, and plasmacytoid dendritic cells (pDCs). Due to their dual myeloid/lymphoid characteristics and rarity, pDCs were grouped here, with minimal impact expected. |
69
+ | 4 | Blood_vessel | Covers endothelial cells, pericytes, and smooth muscle cells. |
70
+ | 5 | Fibroblast_Myofibroblast | Contains fibroblasts, myofibroblasts, and mesenchymal stromal cells. |
71
+ | 6 | Epithelial | Includes various epithelial cells often specific to individual tissues. For instance, in pancreatic tissue, it includes pancreatic acinar, ductal, and islet cells. |
72
+ | 7 | Specialized | Captures tissue-specific cells such as cardiomyocytes, osteoblasts, osteoclasts, and some endocrine cells. |
73
+ | 8 | Melanocyte | Represents melanocytes or melanoma cells specifically found in skin tissue. |
74
+ | 9 | Other | Encompasses cells without marker genes or those with fewer than 10 RNAs. |
75
+
76
+ ---
77
+
78
+ ## Tissue types and associated slides
79
+
80
+ The dataset covers a variety of normal and cancerous human tissues:
81
+
82
+ | Tissue type | Included slides (WSIs) |
83
+ | ----------- | ---------------------------------------------- |
84
+ | Breast | breast_s0, breast_s1, breast_s3, breast_s6 |
85
+ | Cervix | cervix_s0 |
86
+ | Colon | colon_s1, colon_s2 |
87
+ | Heart | heart_s0 |
88
+ | Kidney | kidney_s0, kidney_s1 |
89
+ | Liver | liver_s0, liver_s1 |
90
+ | Lung | lung_s1, lung_s3 |
91
+ | LymphNode | lymph_node_s0 |
92
+ | Ovarian | ovary_s0, ovary_s1 |
93
+ | Pancreatic | pancreatic_s0, pancreatic_s1, pancreatic_s2 |
94
+ | Prostate | prostate_s0 |
95
+ | Skin | skin_s1, skin_s2, skin_s3, skin_s4 |
96
+ | Tonsil | tonsil_s0, tonsil_s1 |
97
+
98
+ Slides with cancerous tissue are: 'breast_s0', 'breast_s1', 'breast_s3', 'breast_s6', 'cervix_s0', 'colon_s1', 'colon_s2', 'kidney_s1', 'liver_s1', 'lung_s1', 'lung_s3', 'ovary_s0', 'ovary_s1', 'pancreatic_s0', 'pancreatic_s1', 'pancreatic_s2', 'prostate_s0', 'skin_s2', 'skin_s3', 'skin_s4'.
99
+
100
+ ---
101
+
102
+ ## Quality control
103
+
104
+ Segmentation and alignment quality were assessed using metrics from comparisons to segmentation predictions by pre-trained [CellViT](https://github.com/TIO-IKIM/CellViT) (SAM-H) model. Metrics included:
105
+
106
+ * **Dice coefficient**: Measures overlap accuracy.
107
+ * **Jaccard index**: Intersection-over-union metric.
108
+ * **Binary Panoptic Quality (bPQ)**: Evaluates segmentation and detection quality simultaneously.
109
+
110
+ These metrics facilitate dynamic filtering based on required accuracy thresholds (e.g., retaining patches with Jaccard index ≥ 0.45).
111
+ A high score generally reflects good alignment and segmentation quality for our dataset. Conversely, a low score does not always indicate poor quality—it may result from actual data issues or from inaccurate predictions by CellViT (see article for details).
112
+
113
+ ---
114
+
115
+ ## Dataset format
116
+
117
+ ```
118
+ license: cc-by-4.0
119
+ data_files:
120
+ - split: train
121
+ path: data/train-*
122
+ dataset_info:
123
+ features:
124
+ - name: file_name
125
+ dtype: string
126
+ - name: image
127
+ dtype: image
128
+ - name: slide_id
129
+ dtype: string
130
+ - name: tissue
131
+ dtype:
132
+ class_label:
133
+ names:
134
+ '0': Breast
135
+ '1': Cervix
136
+ '2': Colon
137
+ '3': Heart
138
+ '4': Kidney
139
+ '5': Liver
140
+ '6': Lung
141
+ '7': LymphNode
142
+ '8': Ovarian
143
+ '9': Pancreatic
144
+ '10': Prostate
145
+ '11': Skin
146
+ '12': Tonsil
147
+ - name: cell_counts
148
+ list: uint16
149
+ - name: instance_map
150
+ dtype: image
151
+ - name: type_map
152
+ dtype: image
153
+ - name: Dice
154
+ dtype: float16
155
+ - name: Jaccard
156
+ dtype: float16
157
+ - name: bPQ
158
+ dtype: float16
159
+ splits:
160
+ - name: train
161
+ num_bytes: 37412008441.54
162
+ num_examples: 154814
163
+ download_size: 19071310668
164
+ dataset_size: 37412008441.54
165
+ ```
166
+
167
+ ---
168
+
169
+ ## Loading the dataset
170
+
171
+ - To load the full dataset:
172
+ ```python
173
+ from datasets import load_dataset
174
+
175
+ ds = load_dataset("FelicieGS/STHELAR_20x") # (replace 'STHELAR_20x' with 'STHELAR_40x' as needed)
176
+ ```
177
+
178
+ - Or to see how it looks, you can stream, using for instance:
179
+ ```python
180
+ from datasets import load_dataset, Image
181
+ import matplotlib.pyplot as plt
182
+ import numpy as np
183
+
184
+ def to_numpy(ex):
185
+ ex["instance_map"] = np.asarray(ex["instance_map"], dtype=np.uint16)
186
+ ex["type_map"] = np.asarray(ex["type_map"], dtype=np.uint8)
187
+ return ex
188
+
189
+ def decode_sample(ex):
190
+ rgb = np.array(ex["image"])
191
+ inst = ex["instance_map"].astype(np.uint16)
192
+ ctype = ex["type_map"].astype(np.uint8)
193
+ return rgb, inst, ctype
194
+
195
+ def plot_sample(ex, rgb, inst, ctype):
196
+ fig, ax = plt.subplots(1, 3, figsize=(10, 3))
197
+
198
+ ax[0].imshow(rgb)
199
+ ax[0].set_title("RGB patch"); ax[0].axis("off")
200
+
201
+ ax[1].imshow(inst, cmap="viridis")
202
+ ax[1].set_title("Instance map"); ax[1].axis("off")
203
+
204
+ ax[2].imshow(ctype, cmap="tab10")
205
+ ax[2].set_title("Cell-type map"); ax[2].axis("off")
206
+
207
+ plt.tight_layout()
208
+ plt.show()
209
+
210
+ print("Slide:", ex["slide_id"])
211
+ print("Tissue class:", tissue_label.int2str(ex["tissue"]))
212
+ print("Cell counts:", ex["cell_counts"])
213
+ print("Dice/Jaccard/bPQ:", ex["Dice"], ex["Jaccard"], ex["bPQ"])
214
+ print("Unique instances:", np.unique(inst))
215
+ print("Unique cell types:", np.unique(ctype))
216
+
217
+
218
+ ds = load_dataset("FelicieGS/STHELAR_20x", split="train", streaming=True)
219
+ print("Features: ", ds.features)
220
+ tissue_label = ds.features["tissue"]
221
+ ds = ds.cast_column("image", Image(decode=True))
222
+ ds = ds.map(to_numpy)
223
+ stream = iter(ds)
224
+
225
+ ex1 = next(stream)
226
+ rgb1, inst1, ctype1 = decode_sample(ex1)
227
+ plot_sample(ex1, rgb1, inst1, ctype1)
228
+ ```
229
+
230
+ ---
231
+
232
+ ## Associated publication and data resources
233
+
234
+ * **Main publication:** [STHELAR bioRxiv](https://doi.org/10.1101/2025.07.11.664123)
235
+ * **All data mentionned in the publication (BioStudies):** [S-BIAD2146](https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD2146)
236
+ * **Code repositories:**
237
+
238
+ * [STHELAR pipeline](https://github.com/MICS-Lab/STHELAR)
239
+ * [CellViT for STHELAR](https://github.com/MICS-Lab/CellViT_for_STHELAR)
240
+
241
+ ---
242
+
243
+ ## Citation
244
+
245
+ Giraud-Sauveur, F. et al. STHELAR, a multi-tissue dataset linking spatial transcriptomics and histology for cell type annotation. bioRxiv (2025) doi:10.1101/2025.07.11.664123.
246
+
247
+
248
+ ---
249
+
250
+ ## License
251
+
252
+ Released under the **CC-BY 4.0 License**.