Merge branch 'main' of https://huggingface.co/datasets/Felix-ML/quoteli3 into main
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
languages:
|
3 |
+
- en
|
4 |
+
licenses:
|
5 |
+
- cc-by-4.0
|
6 |
+
multilinguality:
|
7 |
+
- monolingual
|
8 |
+
size_categories:
|
9 |
+
- 1K<n<10K
|
10 |
+
source_datasets: []
|
11 |
+
---
|
12 |
+
|
13 |
+
# Dataset Card for quoteli3
|
14 |
+
|
15 |
+
## Dataset Description
|
16 |
+
|
17 |
+
- **Homepage:** https://nlp.stanford.edu/~muzny/quoteli.html
|
18 |
+
- **Repository:** https://nlp.stanford.edu/~muzny/quoteli.html
|
19 |
+
- **Paper:** Muzny, Grace, et al. "A two-stage sieve approach for quote attribution." Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. 2017.
|
20 |
+
|
21 |
+
### Dataset Summary
|
22 |
+
|
23 |
+
This dataset is based on the quoteli3 dataset by Muzny et al. (2017). It contains annotated quotes for three pieces of literature: Chekhov\\\\'s The Steppe, Austen\\\\'s Emma and Pride and Prejudice.
|
24 |
+
|
25 |
+
### Languages
|
26 |
+
|
27 |
+
The text in the dataset is English.
|
28 |
+
|
29 |
+
## Dataset Structure
|
30 |
+
|
31 |
+
Training data:
|
32 |
+
-Quotes (1575, 9)
|
33 |
+
-Characters (32, 5)
|
34 |
+
|
35 |
+
Test data:
|
36 |
+
-Quotes (1513, 9)
|
37 |
+
-Characters (145, 5)
|
38 |
+
|
39 |
+
### Data Splits
|
40 |
+
-Quotes:
|
41 |
+
- train:
|
42 |
+
- features: ['mention', 'oid', 'speaker', 'connection', 'id', 'answer', 'answer_mention {'answer', 'answer_start', 'answer_end', 'answer_in_context'}, 'question', 'context'],
|
43 |
+
- num_rows: 1575
|
44 |
+
- test:
|
45 |
+
- features: ['mention', 'oid', 'speaker', 'connection', 'id', 'answer', 'answer_mention {'answer', 'answer_start', 'answer_end', 'answer_in_context'}, 'question', 'context'],
|
46 |
+
- num_rows: 1513
|
47 |
+
-Characters:
|
48 |
+
- train:
|
49 |
+
- features: ['aliases', 'description', 'gender', 'name', 'id'],
|
50 |
+
- num_rows: 32
|
51 |
+
- test:
|
52 |
+
- features: ['aliases', 'description', 'gender', 'name', 'id'],
|
53 |
+
- num_rows: 146
|