Felix-ML commited on
Commit
13eea4d
·
2 Parent(s): bbab514 cba3bec

Merge branch 'main' of https://huggingface.co/datasets/Felix-ML/quoteli3 into main

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ languages:
3
+ - en
4
+ licenses:
5
+ - cc-by-4.0
6
+ multilinguality:
7
+ - monolingual
8
+ size_categories:
9
+ - 1K<n<10K
10
+ source_datasets: []
11
+ ---
12
+
13
+ # Dataset Card for quoteli3
14
+
15
+ ## Dataset Description
16
+
17
+ - **Homepage:** https://nlp.stanford.edu/~muzny/quoteli.html
18
+ - **Repository:** https://nlp.stanford.edu/~muzny/quoteli.html
19
+ - **Paper:** Muzny, Grace, et al. "A two-stage sieve approach for quote attribution." Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. 2017.
20
+
21
+ ### Dataset Summary
22
+
23
+ This dataset is based on the quoteli3 dataset by Muzny et al. (2017). It contains annotated quotes for three pieces of literature: Chekhov\\\\'s The Steppe, Austen\\\\'s Emma and Pride and Prejudice.
24
+
25
+ ### Languages
26
+
27
+ The text in the dataset is English.
28
+
29
+ ## Dataset Structure
30
+
31
+ Training data:
32
+ -Quotes (1575, 9)
33
+ -Characters (32, 5)
34
+
35
+ Test data:
36
+ -Quotes (1513, 9)
37
+ -Characters (145, 5)
38
+
39
+ ### Data Splits
40
+ -Quotes:
41
+ - train:
42
+ - features: ['mention', 'oid', 'speaker', 'connection', 'id', 'answer', 'answer_mention {'answer', 'answer_start', 'answer_end', 'answer_in_context'}, 'question', 'context'],
43
+ - num_rows: 1575
44
+ - test:
45
+ - features: ['mention', 'oid', 'speaker', 'connection', 'id', 'answer', 'answer_mention {'answer', 'answer_start', 'answer_end', 'answer_in_context'}, 'question', 'context'],
46
+ - num_rows: 1513
47
+ -Characters:
48
+ - train:
49
+ - features: ['aliases', 'description', 'gender', 'name', 'id'],
50
+ - num_rows: 32
51
+ - test:
52
+ - features: ['aliases', 'description', 'gender', 'name', 'id'],
53
+ - num_rows: 146