First version of quoteli3 dataset
Browse files- QuoteLi3.py +245 -0
QuoteLi3.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from nlp import DatasetInfo, BuilderConfig, SplitGenerator, Split, utils
|
24 |
+
|
25 |
+
import xml.etree.ElementTree as ET
|
26 |
+
import re
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{muzny2017two,
|
30 |
+
title={A two-stage sieve approach for quote attribution},
|
31 |
+
author={Muzny, Grace and Fang, Michael and Chang, Angel and Jurafsky, Dan},
|
32 |
+
booktitle={Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers},
|
33 |
+
pages={460--470},
|
34 |
+
year={2017}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
This dataset is a representation of Muzny et al.'s QuoteLi3 dataset as a Huggingface dataset
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://nlp.stanford.edu/~muzny/quoteli.html"
|
43 |
+
|
44 |
+
_LICENSE = ""
|
45 |
+
|
46 |
+
_URL = 'http://downloads.cs.stanford.edu/nlp/data/quoteattribution/'
|
47 |
+
_URLs = {
|
48 |
+
'train': {'pp': _URL + 'pp_full.xml'},
|
49 |
+
'test': {'pp': 'https://nlp.stanford.edu/~muzny/data/pp_test.xml',
|
50 |
+
'emma': _URL + 'austen_emma_full.xml',
|
51 |
+
'steppe': _URL + 'chekhov_steppe_full.xml'}
|
52 |
+
}
|
53 |
+
|
54 |
+
class QuoteLi3(datasets.GeneratorBasedBuilder):
|
55 |
+
|
56 |
+
VERSION = datasets.Version("1.1.0")
|
57 |
+
|
58 |
+
BUILDER_CONFIGS = [
|
59 |
+
datasets.BuilderConfig(name="quotes", version=VERSION, description="Returns Quotes"),
|
60 |
+
datasets.BuilderConfig(name="characters", version=VERSION, description="Returns Characters")
|
61 |
+
]
|
62 |
+
|
63 |
+
DEFAULT_CONFIG_NAME = "quotes"
|
64 |
+
|
65 |
+
def _info(self):
|
66 |
+
if self.config.name == "quotes": #returns quotes
|
67 |
+
features = datasets.Features(
|
68 |
+
{
|
69 |
+
"mention": datasets.Value("string"),
|
70 |
+
"oid": datasets.Value("string"),
|
71 |
+
"speaker": datasets.Value("string"),
|
72 |
+
"connection": datasets.Value("string"),
|
73 |
+
"id": datasets.Value("string"),
|
74 |
+
"answer": datasets.Value("string"),
|
75 |
+
"answer_mention": datasets.Value("string"),
|
76 |
+
"question": datasets.Value("string"),
|
77 |
+
"context": datasets.Value("string")
|
78 |
+
}
|
79 |
+
)
|
80 |
+
else: #returns characters
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"aliases": datasets.Sequence(datasets.Value("string")),
|
84 |
+
"description": datasets.Value("string"),
|
85 |
+
"gender": datasets.Value("string"),
|
86 |
+
"id": datasets.Value("string"),
|
87 |
+
"name": datasets.Value("string")
|
88 |
+
}
|
89 |
+
)
|
90 |
+
return datasets.DatasetInfo(
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
features=features,
|
93 |
+
supervised_keys=None,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
license=_LICENSE,
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager):
|
100 |
+
"""Returns SplitGenerators."""
|
101 |
+
downloaded_files = dl_manager.download_and_extract(_URLs)
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"],
|
104 |
+
"split": "train"}),
|
105 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"],
|
106 |
+
"split": "test"}),
|
107 |
+
]
|
108 |
+
|
109 |
+
def _generate_examples(
|
110 |
+
self, filepath, split
|
111 |
+
):
|
112 |
+
""" Yields examples as (key, example) tuples. """
|
113 |
+
for key in filepath:
|
114 |
+
path = filepath[key]
|
115 |
+
with open(path, encoding="utf-8") as f:
|
116 |
+
quote_list = []
|
117 |
+
file_tree = ET.parse(f)
|
118 |
+
base_tree = file_tree.getroot()
|
119 |
+
chapter_list = base_tree.find('text').findall('chapter')
|
120 |
+
if len(chapter_list) != 0:
|
121 |
+
for chapter in chapter_list:
|
122 |
+
quotes = chapter.findall('quote')
|
123 |
+
for quote in quotes:
|
124 |
+
quote_list.append(quote)
|
125 |
+
else:
|
126 |
+
quote_list = base_tree.find('text').findall('quote')
|
127 |
+
|
128 |
+
if self.config.name == "quotes":
|
129 |
+
for quote in quote_list:
|
130 |
+
quote_key = key + '_' + quote.attrib['id']
|
131 |
+
x = self.find_mention(quote, path)
|
132 |
+
if x == 'NO_MENTION':
|
133 |
+
keys = []
|
134 |
+
data = ''
|
135 |
+
for for_key in quote.attrib.keys():
|
136 |
+
keys.append(for_key)
|
137 |
+
data += f'{for_key}: {quote.attrib[for_key]} _'
|
138 |
+
yield quote_key, {
|
139 |
+
"mention": quote.attrib["mention"] if 'mention' in quote.attrib else 'no_mention',
|
140 |
+
"oid": quote.attrib["oid"] if 'oid' in quote.attrib else 'no_oid',
|
141 |
+
"speaker": quote.attrib["speaker"] if 'speaker' in quote.attrib else 'no_speaker',
|
142 |
+
"connection": quote.attrib["connection"] if 'connection' in quote.attrib else 'no_connection',
|
143 |
+
"id": quote.attrib["id"] if 'id' in quote.attrib else 'no_id',
|
144 |
+
"answer": "" if split == "test" else quote.attrib["speaker"],
|
145 |
+
"answer_mention": self.find_mention(quote, path),
|
146 |
+
"question": "Who says 'QUOTE'",
|
147 |
+
"context": self.get_context(quote, path),
|
148 |
+
}
|
149 |
+
else:
|
150 |
+
character_list = base_tree.find('characters').findall('character')
|
151 |
+
for character in character_list:
|
152 |
+
character_key = key + '_' + character.attrib['id']
|
153 |
+
yield character_key, {
|
154 |
+
"aliases": character.attrib["aliases"].split() if 'aliases' in character.attrib else 'no_aliases',
|
155 |
+
"description": character.attrib["description"] if 'description' in character.attrib else 'no_description',
|
156 |
+
"gender": character.attrib["gender"] if 'gender' in character.attrib else 'no_gender',
|
157 |
+
"name": character.attrib["name"] if 'name' in character.attrib else 'no_name',
|
158 |
+
"id": character.attrib["id"] if 'id' in character.attrib else 'no_id',
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
def find_mention(self, quote_element, filename):
|
163 |
+
connection = quote_element.attrib['connection']
|
164 |
+
file_tree = ET.parse(filename)
|
165 |
+
base_tree = file_tree.getroot()
|
166 |
+
mentions_list = []
|
167 |
+
text = base_tree.find('text')
|
168 |
+
chapters = text.findall('chapter')
|
169 |
+
if len(chapters) > 0:
|
170 |
+
for chapter in chapters:
|
171 |
+
mentions = chapter.findall('mention')
|
172 |
+
for mention in mentions:
|
173 |
+
mentions_list.append(mention)
|
174 |
+
|
175 |
+
# if the mention is inside a quote
|
176 |
+
quotes = chapter.findall('quote')
|
177 |
+
for quote in quotes:
|
178 |
+
mentions_in_quotes = quote.findall('mention')
|
179 |
+
for mention in mentions_in_quotes:
|
180 |
+
mentions_list.append(mention)
|
181 |
+
else:
|
182 |
+
mentions_list = base_tree.find('text').findall('mention')
|
183 |
+
#if the mention is inside a quote
|
184 |
+
quotes = text.findall('quote')
|
185 |
+
for quote in quotes:
|
186 |
+
mentions_in_quotes = quote.findall('mention')
|
187 |
+
for mention in mentions_in_quotes:
|
188 |
+
mentions_list.append(mention)
|
189 |
+
mention_tail = ''
|
190 |
+
mention_text = ''
|
191 |
+
for mention in mentions_list:
|
192 |
+
current_id = mention.attrib['id']
|
193 |
+
if type(current_id) == str:
|
194 |
+
if mention.attrib['id'] in connection:
|
195 |
+
mention_text = mention.text
|
196 |
+
mention_tail = mention.tail
|
197 |
+
break
|
198 |
+
else:
|
199 |
+
for single_id in current_id:
|
200 |
+
if single_id in connection:
|
201 |
+
mention_text = mention.text
|
202 |
+
mention_tail = mention.tail
|
203 |
+
break
|
204 |
+
if len(mention_tail) > 25:
|
205 |
+
mention_tail = mention_tail[:25]
|
206 |
+
search_text = mention_text + mention_tail
|
207 |
+
if mention_tail == '':
|
208 |
+
return 'NO_MENTION'
|
209 |
+
return mention_text
|
210 |
+
|
211 |
+
def get_context(self, quote_element, filename):
|
212 |
+
chapter_text = self.get_texts_by_file(filename)
|
213 |
+
#maximum range for the context in characters
|
214 |
+
max_range = 1000
|
215 |
+
quote = self.get_quote_content(quote_element)
|
216 |
+
start_index = chapter_text.find(quote)
|
217 |
+
|
218 |
+
pre = 500
|
219 |
+
post = max_range - pre
|
220 |
+
if start_index < pre:
|
221 |
+
start = 0
|
222 |
+
end = max_range
|
223 |
+
else:
|
224 |
+
start = int(start_index - pre)
|
225 |
+
end = int(start_index + post)
|
226 |
+
|
227 |
+
chapter_text = chapter_text.replace(quote, '"QUOTE"').replace('\n', ' ')
|
228 |
+
context = chapter_text[start:end]
|
229 |
+
return context
|
230 |
+
|
231 |
+
|
232 |
+
def get_texts_by_file(self, filename):
|
233 |
+
file_tree = ET.parse(filename)
|
234 |
+
base_tree = file_tree.getroot()
|
235 |
+
text_with_tags = ET.tostring(base_tree, encoding='unicode', method='xml') # unicode -> utf8
|
236 |
+
text_without_tags = re.sub('<.*?>', '', text_with_tags) # delete all tags
|
237 |
+
return text_without_tags
|
238 |
+
|
239 |
+
def get_quote_content(self, quote):
|
240 |
+
quote_text_tags = ET.tostring(quote, encoding='unicode', method='xml')
|
241 |
+
quote_text = re.sub('<quote.*?>', '', quote_text_tags)
|
242 |
+
end_of_quote = quote_text.find('</quote>')
|
243 |
+
quote_text = quote_text[:end_of_quote]
|
244 |
+
quote_text = re.sub('<.*?>', '', quote_text)
|
245 |
+
return quote_text
|