|
import os |
|
import json |
|
import shutil |
|
import string |
|
import tifffile |
|
import datasets |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
class_sets = { |
|
19: [ |
|
'Urban fabric', |
|
'Industrial or commercial units', |
|
'Arable land', |
|
'Permanent crops', |
|
'Pastures', |
|
'Complex cultivation patterns', |
|
'Land principally occupied by agriculture, with significant areas of' |
|
' natural vegetation', |
|
'Agro-forestry areas', |
|
'Broad-leaved forest', |
|
'Coniferous forest', |
|
'Mixed forest', |
|
'Natural grassland and sparsely vegetated areas', |
|
'Moors, heathland and sclerophyllous vegetation', |
|
'Transitional woodland, shrub', |
|
'Beaches, dunes, sands', |
|
'Inland wetlands', |
|
'Coastal wetlands', |
|
'Inland waters', |
|
'Marine waters', |
|
], |
|
43: [ |
|
'Continuous urban fabric', |
|
'Discontinuous urban fabric', |
|
'Industrial or commercial units', |
|
'Road and rail networks and associated land', |
|
'Port areas', |
|
'Airports', |
|
'Mineral extraction sites', |
|
'Dump sites', |
|
'Construction sites', |
|
'Green urban areas', |
|
'Sport and leisure facilities', |
|
'Non-irrigated arable land', |
|
'Permanently irrigated land', |
|
'Rice fields', |
|
'Vineyards', |
|
'Fruit trees and berry plantations', |
|
'Olive groves', |
|
'Pastures', |
|
'Annual crops associated with permanent crops', |
|
'Complex cultivation patterns', |
|
'Land principally occupied by agriculture, with significant areas of' |
|
' natural vegetation', |
|
'Agro-forestry areas', |
|
'Broad-leaved forest', |
|
'Coniferous forest', |
|
'Mixed forest', |
|
'Natural grassland', |
|
'Moors and heathland', |
|
'Sclerophyllous vegetation', |
|
'Transitional woodland/shrub', |
|
'Beaches, dunes, sands', |
|
'Bare rock', |
|
'Sparsely vegetated areas', |
|
'Burnt areas', |
|
'Inland marshes', |
|
'Peatbogs', |
|
'Salt marshes', |
|
'Salines', |
|
'Intertidal flats', |
|
'Water courses', |
|
'Water bodies', |
|
'Coastal lagoons', |
|
'Estuaries', |
|
'Sea and ocean', |
|
], |
|
} |
|
|
|
label_converter = { |
|
0: 0, |
|
1: 0, |
|
2: 1, |
|
11: 2, |
|
12: 2, |
|
13: 2, |
|
14: 3, |
|
15: 3, |
|
16: 3, |
|
18: 3, |
|
17: 4, |
|
19: 5, |
|
20: 6, |
|
21: 7, |
|
22: 8, |
|
23: 9, |
|
24: 10, |
|
25: 11, |
|
31: 11, |
|
26: 12, |
|
27: 12, |
|
28: 13, |
|
29: 14, |
|
33: 15, |
|
34: 15, |
|
35: 16, |
|
36: 16, |
|
38: 17, |
|
39: 17, |
|
40: 18, |
|
41: 18, |
|
42: 18, |
|
} |
|
|
|
S2_MEAN = [752.40087073, 884.29673756, 1144.16202635, 1297.47289228, 1624.90992062, 2194.6423161, 2422.21248945, 2517.76053101, 2581.64687018, 2645.51888987, 2368.51236873, 1805.06846033] |
|
S2_STD = [1108.02887453, 1155.15170768, 1183.6292542, 1368.11351514, 1370.265037, 1355.55390699, 1416.51487101, 1474.78900051, 1439.3086061, 1582.28010962, 1455.52084939, 1343.48379601] |
|
|
|
S1_MEAN = [-12.54847273, -20.19237134] |
|
S1_STD = [5.25697717, 5.91150917] |
|
|
|
parts = [f"a{letter}" for letter in string.ascii_lowercase] |
|
parts.extend([f"b{letter}" for letter in string.ascii_lowercase[:8]]) |
|
|
|
class BigEarthNetDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DATA_URL = [ |
|
f"https://huggingface.co/datasets/GFM-Bench/BigEarthNet/resolve/main/data/bigearthnet_part_{part}" |
|
for part in parts |
|
] |
|
|
|
metadata = { |
|
"s2c": { |
|
"bands":["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B11", "B12"], |
|
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1613.7, 2202.4], |
|
"mean": S2_MEAN, |
|
"std": S2_STD |
|
}, |
|
"s1": { |
|
"bands": ["VV", "VH"], |
|
"channel_wv": [5500, 5700], |
|
"mean": S1_MEAN, |
|
"std": S1_STD |
|
} |
|
} |
|
|
|
SIZE = HEIGHT = WIDTH = 120 |
|
|
|
NUM_CLASSES = 19 |
|
|
|
spatial_resolution = 10 |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.class2idx = {c: i for i, c in enumerate(class_sets[43])} |
|
|
|
super().__init__(*args, **kwargs) |
|
|
|
def _info(self): |
|
metadata = self.metadata |
|
metadata['size'] = self.SIZE |
|
metadata['num_classes'] = self.NUM_CLASSES |
|
metadata['spatial_resolution'] = self.spatial_resolution |
|
return datasets.DatasetInfo( |
|
description=json.dumps(metadata), |
|
features=datasets.Features({ |
|
"optical": datasets.Array3D(shape=(12, self.HEIGHT, self.WIDTH), dtype="float32"), |
|
"radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"), |
|
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")), |
|
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")), |
|
"label": datasets.Sequence(datasets.Value("float32"), length=self.NUM_CLASSES), |
|
"spatial_resolution": datasets.Value("int32"), |
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if isinstance(self.DATA_URL, list): |
|
try: |
|
downloaded_files = dl_manager.download(self.DATA_URL) |
|
print(f"downloaded files: {downloaded_files}") |
|
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") |
|
print(f"copying files to {combined_file}") |
|
target_dir = os.path.dirname(combined_file) |
|
os.makedirs(target_dir, exist_ok=True) |
|
with open(combined_file, 'wb') as outfile: |
|
counter = 0 |
|
for part_file in downloaded_files: |
|
print(f"copying {counter}-th file: {part_file}") |
|
with open(part_file, 'rb') as infile: |
|
shutil.copyfileobj(infile, outfile) |
|
counter += 1 |
|
print(f"extacting from {combined_file}") |
|
data_dir = dl_manager.extract(combined_file) |
|
os.remove(combined_file) |
|
print(f"data_dir: {data_dir}") |
|
except Exception as e: |
|
|
|
print(f"{e}, setting data_dir to None") |
|
data_dir = None |
|
else: |
|
data_dir = dl_manager.download_and_extract(self.DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"split": 'train', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="val", |
|
gen_kwargs={ |
|
"split": 'val', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"split": 'test', |
|
"data_dir": data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
optical_channel_wv = np.array(self.metadata["s2c"]["channel_wv"]) |
|
radar_channel_wv = np.array(self.metadata["s1"]["channel_wv"]) |
|
spatial_resolution = self.spatial_resolution |
|
|
|
data_dir = os.path.join(data_dir, "BigEarthNet") |
|
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) |
|
metadata = metadata[metadata["split"] == split].reset_index(drop=True) |
|
|
|
for index, row in metadata.iterrows(): |
|
optical_path = os.path.join(data_dir, row.optical_path) |
|
optical = self._read_image(optical_path).astype(np.float32) |
|
|
|
radar_path = os.path.join(data_dir, row.radar_path) |
|
radar = self._read_image(radar_path).astype(np.float32) |
|
|
|
label_path = os.path.join(data_dir, row.label_path) |
|
label = self._load_label(label_path) |
|
|
|
sample = { |
|
"optical": optical, |
|
"radar": radar, |
|
"optical_channel_wv": optical_channel_wv, |
|
"radar_channel_wv": radar_channel_wv, |
|
"label": label, |
|
"spatial_resolution": spatial_resolution, |
|
} |
|
|
|
yield f"{index}", sample |
|
|
|
def _load_label(self, label_path): |
|
with open(label_path) as f: |
|
labels = json.load(f)['labels'] |
|
indices =[self.class2idx[label] for label in labels] |
|
indices_optional = [label_converter.get(idx) for idx in indices] |
|
indices = [idx for idx in indices_optional if idx is not None] |
|
label = np.zeros(19, dtype=np.int64) |
|
label[indices] = 1 |
|
return label |
|
|
|
def _read_image(self, image_path): |
|
"""Read tiff image from image_path |
|
Args: |
|
image_path: |
|
Image path to read from |
|
|
|
Return: |
|
image: |
|
C, H, W numpy array image |
|
""" |
|
image = tifffile.imread(image_path) |
|
image = np.transpose(image, (2, 0, 1)) |
|
|
|
return image |