|
import os |
|
import json |
|
import shutil |
|
import datasets |
|
import tifffile |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import geopandas as gpd |
|
|
|
from datetime import datetime |
|
from GFMBench.datasets.base_dataset import GFMBenchDataset |
|
|
|
S2_MEAN = [1180.2278549 , 1387.76882557, 1436.67627781, 1773.66437066, 2735.86417202, 3080.12530686, 3223.60015887, 3338.35639825, 2418.01390106, 1630.11250759] |
|
|
|
S2_STD = [1976.91493068, 1917.02121286, 1996.45123112, 1903.34296117, 1785.08356262, 1796.4477813 , 1811.90019014, 1793.47036145, 1474.46979658, 1309.88416505] |
|
|
|
S1A_MEAN = [-10.91848081, -17.34320436] |
|
|
|
S1A_STD = [3.26830557, 3.19895575] |
|
|
|
S1D_MEAN = [-11.07395082, -17.45261358] |
|
|
|
S1D_STD = [3.33774017, 3.15584225] |
|
|
|
S1_MEAN = [-10.996215815 -17.39790897] |
|
|
|
S1_STD = [3.30411987, 3.177943] |
|
|
|
s1_metadata = { |
|
'radar': { |
|
'mean': S1_MEAN, |
|
'std': S1_STD, |
|
}, |
|
'radar_a': { |
|
'mean': S1A_MEAN, |
|
'std': S1A_STD, |
|
}, |
|
'radar_d': { |
|
'mean': S1D_MEAN, |
|
'std': S1D_STD, |
|
}, |
|
} |
|
|
|
s1_num_seq = { |
|
'radar': 142, |
|
'radar_a': 71, |
|
'radar_d': 71, |
|
} |
|
|
|
sats = { |
|
"radar": ["S2", "S1A", "S1D"], |
|
"radar_a": ["S2", "S1A"], |
|
"radar_d": ["S2", "S1D"], |
|
} |
|
|
|
class PASTISDataset(GFMBenchDataset): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/PASTIS/resolve/main/PASTIS.tar.xz" |
|
|
|
metadata = { |
|
"s2c": { |
|
"bands": ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12"], |
|
"channel_wv": [492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4], |
|
"mean": S2_MEAN, |
|
"std": S2_STD, |
|
}, |
|
"s1": { |
|
"bands": ["VV", "VH"], |
|
"channel_wv": [5500, 5700], |
|
} |
|
} |
|
|
|
SIZE = HEIGHT = WIDTH = 128 |
|
|
|
spatial_resolution = 10 |
|
|
|
NUM_CLASSES = 20 |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default"), |
|
*[datasets.BuilderConfig(name=name) for name in ['radar', 'radar_a', 'radar_d']] |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "radar" |
|
|
|
def __init__(self, reference_date="2018-09-10", **kwargs): |
|
name = kwargs.get('config_name', None) |
|
print(f"config_name: {name}") |
|
|
|
self.reference_date = datetime(*map(int, reference_date.split("-"))) |
|
print(f"reference_date: {reference_date} -> {self.reference_date}") |
|
|
|
config = "radar" if name == "default" or name is None else name |
|
self.NUM_RADAR_SEQ = s1_num_seq[config] |
|
self.sats = sats[config] |
|
self.metadata["s1"].update(s1_metadata[config]) |
|
self.sats_name = config |
|
|
|
super().__init__( **kwargs) |
|
|
|
def _info(self): |
|
metadata = self.metadata |
|
metadata['size'] = self.SIZE |
|
metadata['num_classes'] = self.NUM_CLASSES |
|
metadata['spatial_resolution'] = self.spatial_resolution |
|
|
|
return datasets.DatasetInfo( |
|
description=json.dumps(metadata), |
|
features=datasets.Features({ |
|
"optical": datasets.Array4D(shape=(61, 10, self.HEIGHT, self.WIDTH), dtype="float32"), |
|
"radar": datasets.Array4D(shape=(self.NUM_RADAR_SEQ, 2, self.HEIGHT, self.WIDTH), dtype="float32"), |
|
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), |
|
"optical_dates": datasets.Sequence(datasets.Value("int32")), |
|
"radar_dates": datasets.Sequence(datasets.Value("int32")), |
|
"optical_sequence_len": datasets.Value("int32"), |
|
"radar_sequence_len": datasets.Value("int32"), |
|
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")), |
|
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")), |
|
"spatial_resolution": datasets.Value("int32"), |
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if isinstance(self.DATA_URL, list): |
|
downloaded_files = dl_manager.download(self.DATA_URL) |
|
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") |
|
with open(combined_file, 'wb') as outfile: |
|
for part_file in downloaded_files: |
|
with open(part_file, 'rb') as infile: |
|
shutil.copyfileobj(infile, outfile) |
|
data_dir = dl_manager.extract(combined_file) |
|
os.remove(combined_file) |
|
else: |
|
data_dir = dl_manager.download_and_extract(self.DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"split": 'train', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="val", |
|
gen_kwargs={ |
|
"split": 'val', |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"split": 'test', |
|
"data_dir": data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
optical_channel_wv = self.metadata["s2c"]["channel_wv"] |
|
radar_channel_wv = self.metadata["s1"]["channel_wv"] |
|
spatial_resolution = self.spatial_resolution |
|
|
|
data_dir = os.path.join(data_dir, "PASTIS") |
|
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) |
|
metadata = metadata[metadata["split"] == split].reset_index(drop=True) |
|
|
|
self._prepare_meta_patch(data_dir) |
|
self._prepare_date_tables() |
|
|
|
for index, row in metadata.iterrows(): |
|
id_patch = row.optical_path.replace("DATA_S2/S2_", "").replace(".tif", "") |
|
|
|
optical_path = os.path.join(data_dir, row.optical_path) |
|
optical = self._read_image(optical_path).astype(np.float32) |
|
optical_sequence_len = optical.shape[0] |
|
optical = self._pad_sequence(optical, sat="S2") |
|
optical_dates = self._get_dates(id_patch=id_patch, sat="S2") |
|
|
|
radar_sequence_len = 0 |
|
if self.sats_name in ["radar", "radar_a"]: |
|
radar_a_path = os.path.join(data_dir, row.radar_a_path) |
|
radar_a = self._read_image(radar_a_path).astype(np.float32)[:, :2, :, :] |
|
radar_a_dates = self._get_dates(id_patch=id_patch, sat="S1A") |
|
radar_sequence_len += radar_a.shape[0] |
|
if self.sats_name == "radar_a": |
|
radar = self._pad_sequence(radar_a, "S1A") |
|
radar_dates = radar_a_dates |
|
|
|
if self.sats_name in ["radar", "radar_d"]: |
|
radar_d_path = os.path.join(data_dir, row.radar_d_path) |
|
radar_d = self._read_image(radar_d_path).astype(np.float32)[:, :2, :, :] |
|
radar_d_dates = self._get_dates(id_patch=id_patch, sat="S1D") |
|
radar_sequence_len += radar_d.shape[0] |
|
if self.sats_name == "radar_d": |
|
radar = self._pad_sequence(radar_d, sat="S1D") |
|
radar_dates = radar_d_dates |
|
|
|
if self.sats_name == "radar": |
|
assert radar_a is not None and radar_d is not None |
|
radar, radar_dates = self._merge_sort_dates(radar_a_dates, radar_d_dates, radar_a, radar_d) |
|
radar = self._pad_sequence(radar, sat="S1_both") |
|
|
|
label_path = os.path.join(data_dir, row.label_path) |
|
label = tifffile.imread(label_path)[0] |
|
|
|
sample = { |
|
"optical": optical, |
|
"optical_channel_wv": optical_channel_wv, |
|
"optical_dates": optical_dates, |
|
"optical_sequence_len": optical_sequence_len, |
|
"radar": radar, |
|
"radar_channel_wv": radar_channel_wv, |
|
"radar_dates": radar_dates, |
|
"radar_sequence_len": radar_sequence_len, |
|
"label": label, |
|
"spatial_resolution": spatial_resolution, |
|
} |
|
|
|
yield f"{index}", sample |
|
|
|
|
|
def _prepare_meta_patch(self, data_dir): |
|
self.meta_patch = gpd.read_file(os.path.join(data_dir, "metadata.geojson")) |
|
self.meta_patch.index = self.meta_patch["ID_PATCH"].astype(int) |
|
self.meta_patch.sort_index(inplace=True) |
|
|
|
def _prepare_date_tables(self): |
|
self.date_tables = {sat: None for sat in self.sats} |
|
self.date_range = np.array(range(-200, 600)) |
|
for s in self.sats: |
|
dates = self.meta_patch["dates-{}".format(s)] |
|
date_table = pd.DataFrame( |
|
index=self.meta_patch.index, columns=self.date_range, dtype=int |
|
) |
|
for pid, date_seq in dates.items(): |
|
if type(date_seq) == str: |
|
date_seq = json.loads(date_seq) |
|
d = pd.DataFrame().from_dict(date_seq, orient="index") |
|
d = d[0].apply( |
|
lambda x: ( |
|
datetime(int(str(x)[:4]), int(str(x)[4:6]), int(str(x)[6:])) |
|
- self.reference_date |
|
).days |
|
) |
|
date_table.loc[pid, d.values] = 1 |
|
date_table = date_table.fillna(0) |
|
self.date_tables[s] = { |
|
index: np.array(list(d.values())) |
|
for index, d in date_table.to_dict(orient="index").items() |
|
} |
|
|
|
def _get_dates(self, id_patch, sat="S2"): |
|
id_patch = int(id_patch) |
|
return self.date_range[np.where(self.date_tables[sat][id_patch] == 1)[0]] |
|
|
|
def _merge_sort_dates(self, radar_a_dates, radar_d_dates, radar_a, radar_d): |
|
merged_dates = np.concatenate((radar_a_dates, radar_d_dates)) |
|
sorted_indices = np.argsort(merged_dates) |
|
|
|
sorted_images = np.concatenate((radar_a, radar_d), axis=0)[sorted_indices] |
|
sorted_dates = merged_dates[sorted_indices] |
|
|
|
return sorted_images, sorted_dates |
|
|
|
def _pad_sequence(self, image, sat="S2"): |
|
assert sat in ["S2", "S1A", "S1D", "S1_both"] |
|
sizes = {"S2": 61, "S1A": 71, "S1D": 71, "S1_both": 142} |
|
assert image.shape[0] <= sizes[sat] |
|
padding_size = sizes[sat] - image.shape[0] |
|
if padding_size == 0: |
|
return image |
|
|
|
pad = np.zeros((padding_size, *image.shape[1:])) |
|
padded_image = np.concatenate((image, pad), axis=0) |
|
return padded_image |