PASTIS / PASTIS.py
yuxuanw8's picture
Update PASTIS.py
684a186 verified
import os
import json
import shutil
import datasets
import tifffile
import pandas as pd
import numpy as np
import geopandas as gpd
from datetime import datetime
from GFMBench.datasets.base_dataset import GFMBenchDataset
S2_MEAN = [1180.2278549 , 1387.76882557, 1436.67627781, 1773.66437066, 2735.86417202, 3080.12530686, 3223.60015887, 3338.35639825, 2418.01390106, 1630.11250759]
S2_STD = [1976.91493068, 1917.02121286, 1996.45123112, 1903.34296117, 1785.08356262, 1796.4477813 , 1811.90019014, 1793.47036145, 1474.46979658, 1309.88416505]
S1A_MEAN = [-10.91848081, -17.34320436]
S1A_STD = [3.26830557, 3.19895575]
S1D_MEAN = [-11.07395082, -17.45261358]
S1D_STD = [3.33774017, 3.15584225]
S1_MEAN = [-10.996215815 -17.39790897]
S1_STD = [3.30411987, 3.177943]
s1_metadata = {
'radar': {
'mean': S1_MEAN,
'std': S1_STD,
},
'radar_a': {
'mean': S1A_MEAN,
'std': S1A_STD,
},
'radar_d': {
'mean': S1D_MEAN,
'std': S1D_STD,
},
}
s1_num_seq = {
'radar': 142,
'radar_a': 71,
'radar_d': 71,
}
sats = {
"radar": ["S2", "S1A", "S1D"],
"radar_a": ["S2", "S1A"],
"radar_d": ["S2", "S1D"],
}
class PASTISDataset(GFMBenchDataset):
VERSION = datasets.Version("1.0.0")
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/PASTIS/resolve/main/PASTIS.tar.xz"
metadata = {
"s2c": {
"bands": ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12"],
"channel_wv": [492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4],
"mean": S2_MEAN,
"std": S2_STD,
},
"s1": {
"bands": ["VV", "VH"],
"channel_wv": [5500, 5700],
}
}
SIZE = HEIGHT = WIDTH = 128
spatial_resolution = 10
NUM_CLASSES = 20 # 0 is background class, and 19 is the void label
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default"),
*[datasets.BuilderConfig(name=name) for name in ['radar', 'radar_a', 'radar_d']]
]
DEFAULT_CONFIG_NAME = "radar"
def __init__(self, reference_date="2018-09-10", **kwargs):
name = kwargs.get('config_name', None)
print(f"config_name: {name}")
self.reference_date = datetime(*map(int, reference_date.split("-")))
print(f"reference_date: {reference_date} -> {self.reference_date}")
config = "radar" if name == "default" or name is None else name
self.NUM_RADAR_SEQ = s1_num_seq[config]
self.sats = sats[config]
self.metadata["s1"].update(s1_metadata[config])
self.sats_name = config
super().__init__( **kwargs)
def _info(self):
metadata = self.metadata
metadata['size'] = self.SIZE
metadata['num_classes'] = self.NUM_CLASSES
metadata['spatial_resolution'] = self.spatial_resolution
return datasets.DatasetInfo(
description=json.dumps(metadata),
features=datasets.Features({
"optical": datasets.Array4D(shape=(61, 10, self.HEIGHT, self.WIDTH), dtype="float32"),
"radar": datasets.Array4D(shape=(self.NUM_RADAR_SEQ, 2, self.HEIGHT, self.WIDTH), dtype="float32"),
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"),
"optical_dates": datasets.Sequence(datasets.Value("int32")),
"radar_dates": datasets.Sequence(datasets.Value("int32")),
"optical_sequence_len": datasets.Value("int32"),
"radar_sequence_len": datasets.Value("int32"),
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")),
"spatial_resolution": datasets.Value("int32"),
}),
)
def _split_generators(self, dl_manager):
if isinstance(self.DATA_URL, list):
downloaded_files = dl_manager.download(self.DATA_URL)
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
with open(combined_file, 'wb') as outfile:
for part_file in downloaded_files:
with open(part_file, 'rb') as infile:
shutil.copyfileobj(infile, outfile)
data_dir = dl_manager.extract(combined_file)
os.remove(combined_file)
else:
data_dir = dl_manager.download_and_extract(self.DATA_URL)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"split": 'train',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="val",
gen_kwargs={
"split": 'val',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"split": 'test',
"data_dir": data_dir,
},
)
]
def _generate_examples(self, split, data_dir):
optical_channel_wv = self.metadata["s2c"]["channel_wv"]
radar_channel_wv = self.metadata["s1"]["channel_wv"]
spatial_resolution = self.spatial_resolution
data_dir = os.path.join(data_dir, "PASTIS")
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
metadata = metadata[metadata["split"] == split].reset_index(drop=True)
self._prepare_meta_patch(data_dir)
self._prepare_date_tables()
for index, row in metadata.iterrows():
id_patch = row.optical_path.replace("DATA_S2/S2_", "").replace(".tif", "")
optical_path = os.path.join(data_dir, row.optical_path)
optical = self._read_image(optical_path).astype(np.float32) # TxCxHxW
optical_sequence_len = optical.shape[0]
optical = self._pad_sequence(optical, sat="S2") # 61xCxHxW
optical_dates = self._get_dates(id_patch=id_patch, sat="S2")
radar_sequence_len = 0
if self.sats_name in ["radar", "radar_a"]:
radar_a_path = os.path.join(data_dir, row.radar_a_path)
radar_a = self._read_image(radar_a_path).astype(np.float32)[:, :2, :, :] # T, 2, 128, 128
radar_a_dates = self._get_dates(id_patch=id_patch, sat="S1A")
radar_sequence_len += radar_a.shape[0]
if self.sats_name == "radar_a":
radar = self._pad_sequence(radar_a, "S1A") # 71, 2, 128, 128
radar_dates = radar_a_dates
if self.sats_name in ["radar", "radar_d"]:
radar_d_path = os.path.join(data_dir, row.radar_d_path)
radar_d = self._read_image(radar_d_path).astype(np.float32)[:, :2, :, :]
radar_d_dates = self._get_dates(id_patch=id_patch, sat="S1D")
radar_sequence_len += radar_d.shape[0]
if self.sats_name == "radar_d":
radar = self._pad_sequence(radar_d, sat="S1D") # 71, 2, 128, 128
radar_dates = radar_d_dates
if self.sats_name == "radar":
assert radar_a is not None and radar_d is not None
radar, radar_dates = self._merge_sort_dates(radar_a_dates, radar_d_dates, radar_a, radar_d)
radar = self._pad_sequence(radar, sat="S1_both") # 142, 2, 128, 128
label_path = os.path.join(data_dir, row.label_path) # 3xHxW
label = tifffile.imread(label_path)[0] # HxW
sample = {
"optical": optical,
"optical_channel_wv": optical_channel_wv,
"optical_dates": optical_dates,
"optical_sequence_len": optical_sequence_len,
"radar": radar,
"radar_channel_wv": radar_channel_wv,
"radar_dates": radar_dates,
"radar_sequence_len": radar_sequence_len,
"label": label,
"spatial_resolution": spatial_resolution,
}
yield f"{index}", sample
# util functions
def _prepare_meta_patch(self, data_dir):
self.meta_patch = gpd.read_file(os.path.join(data_dir, "metadata.geojson"))
self.meta_patch.index = self.meta_patch["ID_PATCH"].astype(int)
self.meta_patch.sort_index(inplace=True)
def _prepare_date_tables(self):
self.date_tables = {sat: None for sat in self.sats}
self.date_range = np.array(range(-200, 600))
for s in self.sats:
dates = self.meta_patch["dates-{}".format(s)]
date_table = pd.DataFrame(
index=self.meta_patch.index, columns=self.date_range, dtype=int
)
for pid, date_seq in dates.items():
if type(date_seq) == str:
date_seq = json.loads(date_seq)
d = pd.DataFrame().from_dict(date_seq, orient="index")
d = d[0].apply(
lambda x: (
datetime(int(str(x)[:4]), int(str(x)[4:6]), int(str(x)[6:]))
- self.reference_date
).days
)
date_table.loc[pid, d.values] = 1
date_table = date_table.fillna(0)
self.date_tables[s] = {
index: np.array(list(d.values()))
for index, d in date_table.to_dict(orient="index").items()
}
def _get_dates(self, id_patch, sat="S2"):
id_patch = int(id_patch)
return self.date_range[np.where(self.date_tables[sat][id_patch] == 1)[0]]
def _merge_sort_dates(self, radar_a_dates, radar_d_dates, radar_a, radar_d):
merged_dates = np.concatenate((radar_a_dates, radar_d_dates))
sorted_indices = np.argsort(merged_dates)
sorted_images = np.concatenate((radar_a, radar_d), axis=0)[sorted_indices]
sorted_dates = merged_dates[sorted_indices]
return sorted_images, sorted_dates
def _pad_sequence(self, image, sat="S2"):
assert sat in ["S2", "S1A", "S1D", "S1_both"]
sizes = {"S2": 61, "S1A": 71, "S1D": 71, "S1_both": 142}
assert image.shape[0] <= sizes[sat]
padding_size = sizes[sat] - image.shape[0]
if padding_size == 0:
return image
pad = np.zeros((padding_size, *image.shape[1:]))
padded_image = np.concatenate((image, pad), axis=0)
return padded_image