import os import json import shutil import datasets import tifffile import pandas as pd import numpy as np import geopandas as gpd from datetime import datetime from GFMBench.datasets.base_dataset import GFMBenchDataset S2_MEAN = [1180.2278549 , 1387.76882557, 1436.67627781, 1773.66437066, 2735.86417202, 3080.12530686, 3223.60015887, 3338.35639825, 2418.01390106, 1630.11250759] S2_STD = [1976.91493068, 1917.02121286, 1996.45123112, 1903.34296117, 1785.08356262, 1796.4477813 , 1811.90019014, 1793.47036145, 1474.46979658, 1309.88416505] S1A_MEAN = [-10.91848081, -17.34320436] S1A_STD = [3.26830557, 3.19895575] S1D_MEAN = [-11.07395082, -17.45261358] S1D_STD = [3.33774017, 3.15584225] S1_MEAN = [-10.996215815 -17.39790897] S1_STD = [3.30411987, 3.177943] s1_metadata = { 'radar': { 'mean': S1_MEAN, 'std': S1_STD, }, 'radar_a': { 'mean': S1A_MEAN, 'std': S1A_STD, }, 'radar_d': { 'mean': S1D_MEAN, 'std': S1D_STD, }, } s1_num_seq = { 'radar': 142, 'radar_a': 71, 'radar_d': 71, } sats = { "radar": ["S2", "S1A", "S1D"], "radar_a": ["S2", "S1A"], "radar_d": ["S2", "S1D"], } class PASTISDataset(GFMBenchDataset): VERSION = datasets.Version("1.0.0") DATA_URL = "https://huggingface.co/datasets/GFM-Bench/PASTIS/resolve/main/PASTIS.tar.xz" metadata = { "s2c": { "bands": ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12"], "channel_wv": [492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4], "mean": S2_MEAN, "std": S2_STD, }, "s1": { "bands": ["VV", "VH"], "channel_wv": [5500, 5700], } } SIZE = HEIGHT = WIDTH = 128 spatial_resolution = 10 NUM_CLASSES = 20 # 0 is background class, and 19 is the void label BUILDER_CONFIGS = [ datasets.BuilderConfig(name="default"), *[datasets.BuilderConfig(name=name) for name in ['radar', 'radar_a', 'radar_d']] ] DEFAULT_CONFIG_NAME = "radar" def __init__(self, reference_date="2018-09-10", **kwargs): name = kwargs.get('config_name', None) print(f"config_name: {name}") self.reference_date = datetime(*map(int, reference_date.split("-"))) print(f"reference_date: {reference_date} -> {self.reference_date}") config = "radar" if name == "default" or name is None else name self.NUM_RADAR_SEQ = s1_num_seq[config] self.sats = sats[config] self.metadata["s1"].update(s1_metadata[config]) self.sats_name = config super().__init__( **kwargs) def _info(self): metadata = self.metadata metadata['size'] = self.SIZE metadata['num_classes'] = self.NUM_CLASSES metadata['spatial_resolution'] = self.spatial_resolution return datasets.DatasetInfo( description=json.dumps(metadata), features=datasets.Features({ "optical": datasets.Array4D(shape=(61, 10, self.HEIGHT, self.WIDTH), dtype="float32"), "radar": datasets.Array4D(shape=(self.NUM_RADAR_SEQ, 2, self.HEIGHT, self.WIDTH), dtype="float32"), "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), "optical_dates": datasets.Sequence(datasets.Value("int32")), "radar_dates": datasets.Sequence(datasets.Value("int32")), "optical_sequence_len": datasets.Value("int32"), "radar_sequence_len": datasets.Value("int32"), "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), "radar_channel_wv": datasets.Sequence(datasets.Value("float32")), "spatial_resolution": datasets.Value("int32"), }), ) def _split_generators(self, dl_manager): if isinstance(self.DATA_URL, list): downloaded_files = dl_manager.download(self.DATA_URL) combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") with open(combined_file, 'wb') as outfile: for part_file in downloaded_files: with open(part_file, 'rb') as infile: shutil.copyfileobj(infile, outfile) data_dir = dl_manager.extract(combined_file) os.remove(combined_file) else: data_dir = dl_manager.download_and_extract(self.DATA_URL) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "split": 'train', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="val", gen_kwargs={ "split": 'val', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "split": 'test', "data_dir": data_dir, }, ) ] def _generate_examples(self, split, data_dir): optical_channel_wv = self.metadata["s2c"]["channel_wv"] radar_channel_wv = self.metadata["s1"]["channel_wv"] spatial_resolution = self.spatial_resolution data_dir = os.path.join(data_dir, "PASTIS") metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) metadata = metadata[metadata["split"] == split].reset_index(drop=True) self._prepare_meta_patch(data_dir) self._prepare_date_tables() for index, row in metadata.iterrows(): id_patch = row.optical_path.replace("DATA_S2/S2_", "").replace(".tif", "") optical_path = os.path.join(data_dir, row.optical_path) optical = self._read_image(optical_path).astype(np.float32) # TxCxHxW optical_sequence_len = optical.shape[0] optical = self._pad_sequence(optical, sat="S2") # 61xCxHxW optical_dates = self._get_dates(id_patch=id_patch, sat="S2") radar_sequence_len = 0 if self.sats_name in ["radar", "radar_a"]: radar_a_path = os.path.join(data_dir, row.radar_a_path) radar_a = self._read_image(radar_a_path).astype(np.float32)[:, :2, :, :] # T, 2, 128, 128 radar_a_dates = self._get_dates(id_patch=id_patch, sat="S1A") radar_sequence_len += radar_a.shape[0] if self.sats_name == "radar_a": radar = self._pad_sequence(radar_a, "S1A") # 71, 2, 128, 128 radar_dates = radar_a_dates if self.sats_name in ["radar", "radar_d"]: radar_d_path = os.path.join(data_dir, row.radar_d_path) radar_d = self._read_image(radar_d_path).astype(np.float32)[:, :2, :, :] radar_d_dates = self._get_dates(id_patch=id_patch, sat="S1D") radar_sequence_len += radar_d.shape[0] if self.sats_name == "radar_d": radar = self._pad_sequence(radar_d, sat="S1D") # 71, 2, 128, 128 radar_dates = radar_d_dates if self.sats_name == "radar": assert radar_a is not None and radar_d is not None radar, radar_dates = self._merge_sort_dates(radar_a_dates, radar_d_dates, radar_a, radar_d) radar = self._pad_sequence(radar, sat="S1_both") # 142, 2, 128, 128 label_path = os.path.join(data_dir, row.label_path) # 3xHxW label = tifffile.imread(label_path)[0] # HxW sample = { "optical": optical, "optical_channel_wv": optical_channel_wv, "optical_dates": optical_dates, "optical_sequence_len": optical_sequence_len, "radar": radar, "radar_channel_wv": radar_channel_wv, "radar_dates": radar_dates, "radar_sequence_len": radar_sequence_len, "label": label, "spatial_resolution": spatial_resolution, } yield f"{index}", sample # util functions def _prepare_meta_patch(self, data_dir): self.meta_patch = gpd.read_file(os.path.join(data_dir, "metadata.geojson")) self.meta_patch.index = self.meta_patch["ID_PATCH"].astype(int) self.meta_patch.sort_index(inplace=True) def _prepare_date_tables(self): self.date_tables = {sat: None for sat in self.sats} self.date_range = np.array(range(-200, 600)) for s in self.sats: dates = self.meta_patch["dates-{}".format(s)] date_table = pd.DataFrame( index=self.meta_patch.index, columns=self.date_range, dtype=int ) for pid, date_seq in dates.items(): if type(date_seq) == str: date_seq = json.loads(date_seq) d = pd.DataFrame().from_dict(date_seq, orient="index") d = d[0].apply( lambda x: ( datetime(int(str(x)[:4]), int(str(x)[4:6]), int(str(x)[6:])) - self.reference_date ).days ) date_table.loc[pid, d.values] = 1 date_table = date_table.fillna(0) self.date_tables[s] = { index: np.array(list(d.values())) for index, d in date_table.to_dict(orient="index").items() } def _get_dates(self, id_patch, sat="S2"): id_patch = int(id_patch) return self.date_range[np.where(self.date_tables[sat][id_patch] == 1)[0]] def _merge_sort_dates(self, radar_a_dates, radar_d_dates, radar_a, radar_d): merged_dates = np.concatenate((radar_a_dates, radar_d_dates)) sorted_indices = np.argsort(merged_dates) sorted_images = np.concatenate((radar_a, radar_d), axis=0)[sorted_indices] sorted_dates = merged_dates[sorted_indices] return sorted_images, sorted_dates def _pad_sequence(self, image, sat="S2"): assert sat in ["S2", "S1A", "S1D", "S1_both"] sizes = {"S2": 61, "S1A": 71, "S1D": 71, "S1_both": 142} assert image.shape[0] <= sizes[sat] padding_size = sizes[sat] - image.shape[0] if padding_size == 0: return image pad = np.zeros((padding_size, *image.shape[1:])) padded_image = np.concatenate((image, pad), axis=0) return padded_image