--- task_categories: - image-segmentation --- # NLCD-L This dataset incorporates both SSL4EO-L Benchmark dataset and the NLCD-L dataset which is derived from the original SSL4EO-L Benchmark dataset by combining optical data from Landsat-7 and Landsat 8-9 with NLCD ground-truth labels, originally proposed in SSL4EO-L. The dataset contains 20 MSI bands, deliberately exceeding Sentinel-2’s channel count. It comprises 17,500 training samples, 3,750 validation samples, and 3,750 test samples. Please refer to the original SSL4EO-L paper for more detailed information about the original SSL4EO-L Benchmark dataset: - Paper: https://arxiv.org/abs/2306.09424 ## How to Use This Dataset ```python from datasets import load_dataset # To access NLCD-L, set name to etm_oli_toa_nlcd in load_dataset function dataset = load_dataset("GFM-Bench/SSL4EO-L-Benchmark", name="etm_oli_toa_nlcd") ``` Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 ## Dataset Metadata The following metadata provides details about the Landsat imagery used in the dataset: | Configuration Name | Number of Bands | Number of Label Classes | Spatial Resolution | |:---------------:|:------------:|:------------:|:------------:| | etm_sr_cdl | 6 | 134 | 30 | | etm_sr_nlcd | 6 | 21 | 30 | | etm_toa_cdl | 9 | 134 | 30 | | etm_toa_nlcd | 9 | 21 | 30 | | oli_sr_nlcd | 7 | 134 | 30 | | oli_sr_nlcd | 7 | 21 | 30 | | oli_tirs_toa_cdl | 11 | 134 | 30 | | oli_tirs_toa_nlcd | 11 | 21 | 30 | | **etm_oli_toa_cdl** | 20 | 134 | 30 | | **etm_oli_toa_nlcd** | 20 | 21 | 30 | ## Dataset Splits The **NLCD-L** and SSL4EO-L Benchmark dataset consist following splits: - **train**: 17,500 samples - **val**: 3,750 samples - **test**: 3,750 samples ## Dataset Features: The **NLCD-L** and SSL4EO-L dataset consist of following features: - **optical**: the Landsat image. - **label**: the segmentation labels. - **optical_channel_wv**: the central wavelength of each Landsat bands. - **spatial_resolution**: the spatial resolution of images. ## Citation If you use either the NLCD-L dataset or the original SSL4EO-L Benchmark dataset in your work, please cite the original paper: ``` @article{stewart2023ssl4eo, title={Ssl4eo-l: Datasets and foundation models for landsat imagery}, author={Stewart, Adam and Lehmann, Nils and Corley, Isaac and Wang, Yi and Chang, Yi-Chia and Ait Ali Braham, Nassim Ait and Sehgal, Shradha and Robinson, Caleb and Banerjee, Arindam}, journal={Advances in Neural Information Processing Systems}, volume={36}, pages={59787--59807}, year={2023} } ``` and if you also find our benchmark useful, please consider citing our paper: ``` @misc{si2025scalablefoundationmodelmultimodal, title={Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data}, author={Haozhe Si and Yuxuan Wan and Minh Do and Deepak Vasisht and Han Zhao and Hendrik F. Hamann}, year={2025}, eprint={2503.12843}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.12843}, } ```