--- license: mit dataset_info: features: - name: id dtype: string - name: context dtype: string - name: news dtype: string - name: conversations list: - name: role dtype: string - name: value dtype: string - name: label dtype: string - name: pct_change dtype: float64 - name: day_of_week dtype: int64 - name: month dtype: int64 - name: open dtype: float64 - name: close dtype: float64 - name: rsi dtype: 'null' - name: macd dtype: float64 - name: volume dtype: float64 - name: high dtype: float64 - name: low dtype: float64 - name: adj_close dtype: float64 - name: boll_ub dtype: float64 - name: boll_lb dtype: float64 - name: rsi_30 dtype: float64 - name: cci_30 dtype: float64 - name: dx_30 dtype: float64 - name: close_30_sma dtype: float64 - name: close_60_sma dtype: float64 - name: daily_return dtype: float64 - name: volatility dtype: float64 - name: is_overbought dtype: int64 - name: is_oversold dtype: int64 - name: date dtype: timestamp[us] - name: news_embedding list: float64 - name: mentions_policy dtype: int64 - name: mentions_merger dtype: int64 - name: mentions_earnings dtype: int64 - name: mentions_commodity dtype: int64 - name: finance_sentiment_scores list: float64 - name: avg_finance_sentiment dtype: float64 - name: total_positive_hits dtype: int64 - name: total_negative_hits dtype: int64 - name: rolling_close_3d dtype: float64 - name: rolling_close_5d dtype: float64 - name: rolling_volatility_5d dtype: float64 - name: sma_crossover dtype: int64 - name: sentiment_aligned_return dtype: float64 splits: - name: train num_bytes: 47360695 num_examples: 1477 - name: test num_bytes: 2527791 num_examples: 317 - name: valid num_bytes: 3603858 num_examples: 317 download_size: 31109624 dataset_size: 53492344 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* --- ## NIFTY-Feature-Enhanced ## Dataset Summary NIFTY-Feature-Enhanced is a multi-modal, finance-focused dataset built on top of raeidsaqur/NIFTY . We enrich the original dataset with structured financial indicators, derived signals, temporal features, sentiment scores, embeddings, and event tags. This makes it suitable for: Predictive ML models (e.g., XGBoost, LSTMs, Transformers) Financial NLP tasks (sentiment, RAG, semantic search) Multi-modal research (numeric + textual features combined) ## Enrichments Added ## Temporal Features day_of_week, month ## Market Indicators (parsed from context) open, close, high, low, adj_close, volume, pct_change Technical signals: macd, rsi, rsi_30, cci_30, dx_30, boll_ub, boll_lb, close_30_sma, close_60_sma ## Derived Financial Signals daily_return = (close-open)/open volatility = high-low is_overbought (RSI>70), is_oversold (RSI<30) ## NLP Enrichments news_embedding → 384-dim semantic vector (MiniLM) finance_sentiment_scores (lexicon-based per-headline) avg_finance_sentiment → aggregate sentiment per day total_positive_hits, total_negative_hits ## Event Tags (regex-based) mentions_policy, mentions_merger, mentions_earnings, mentions_commodity ## Rolling & Cross Features rolling_close_3d, rolling_close_5d rolling_volatility_5d sma_crossover (30SMA vs. 60SMA) sentiment_aligned_return = sentiment × pct_change ## Example Row { "date": "2010-01-26", "open": 110.12, "close": 109.77, "volume": 147680200, "macd": 0.8312, "rsi_30": 59.84, "daily_return": -0.0031, "volatility": 1.12, "is_overbought": 0, "is_oversold": 0, "avg_finance_sentiment": 0.007, "mentions_policy": 1, "mentions_merger": 0, "mentions_earnings": 1, "mentions_commodity": 1, "rolling_close_3d": 110.95, "rolling_close_5d": 112.31, "sma_crossover": 1, "sentiment_aligned_return": -2.1e-05, "news_embedding": [0.036, -0.041, 0.082, ...] # 384-dim vector } ## Use Cases Financial prediction: Build ML models using enriched market + sentiment signals. Financial NLP: Benchmark sentiment models, retrieval tasks, RAG pipelines. Multi-modal ML: Combine embeddings + structured features for hybrid models. Explainability studies: Investigate interactions between news tone and market moves. ## Citation If you use the NIFTY Financial dataset in your work, please consider citing our paper: @article{raeidsaqur2024NiftyLM, title = {NIFTY-LM Financial News Headlines Dataset for LLMs}, author = {Raeid Saqur}, year = 2024, journal = {ArXiv}, url = {https://arxiv.org/abs/2024.5599314} } ## Acknowledgements ## Original dataset: raeidsaqur/NIFTY ## Enrichments by Naga Adithya Kaushik (GenAIDevTOProd) This makes NIFTY-Feature-Enhanced one of the most feature-rich financial datasets on Hugging Face, bridging numeric markets + NLP headlines for ML + GenAI research.