Datasets:
File size: 6,445 Bytes
57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 b0118b9 57fdd71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import krakenex
import pandas as pd
from datetime import datetime
import time
import os
from typing import Dict, List, Optional
import logging
from huggingface_hub import HfApi, login
from io import StringIO
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('kraken_data_collection.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class KrakenHuggingFaceCollector:
"""Handles data collection from Kraken and uploading to Hugging Face"""
def __init__(self, kraken_key_path: str, hf_token: str, repo_id: str):
# Initialize Kraken API
self.kraken_api = krakenex.API()
try:
self.kraken_api.load_key(kraken_key_path)
logger.info("Successfully loaded Kraken API key")
except Exception as e:
logger.error(f"Failed to load Kraken API key: {e}")
raise
# Initialize Hugging Face
try:
login(token=hf_token)
self.hf_api = HfApi()
self.repo_id = repo_id
logger.info("Successfully logged in to Hugging Face")
except Exception as e:
logger.error(f"Failed to login to Hugging Face: {e}")
raise
# Trading pairs to collect data for
self.pairs = [
"XXBTZUSD", # Bitcoin
"XETHZUSD", # Ethereum
"XXRPZUSD", # Ripple
"ADAUSD", # Cardano
"DOGEUSD", # Dogecoin
"BNBUSD", # Binance Coin
"SOLUSD", # Solana
"DOTUSD", # Polkadot
"MATICUSD", # Polygon
"LTCUSD" # Litecoin
]
def fetch_ticker_data(self, pair: str) -> Optional[Dict]:
"""Fetch ticker data for a single pair"""
try:
response = self.kraken_api.query_public('Ticker', {'pair': pair})
if 'error' in response and response['error']:
logger.error(f"Kraken API error for {pair}: {response['error']}")
return None
data = response['result']
pair_data = list(data.values())[0]
return {
'timestamp': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'),
'pair': pair,
'price': float(pair_data['c'][0]), # Last trade closed price
'volume': float(pair_data['v'][0]), # 24h volume
'bid': float(pair_data['b'][0]), # Best bid
'ask': float(pair_data['a'][0]), # Best ask
'low': float(pair_data['l'][0]), # 24h low
'high': float(pair_data['h'][0]), # 24h high
'vwap': float(pair_data['p'][0]), # 24h VWAP
'trades': int(pair_data['t'][0]) # Number of trades
}
except Exception as e:
logger.error(f"Error fetching data for {pair}: {e}")
return None
def upload_to_huggingface(self, df: pd.DataFrame, split: str) -> None:
"""Upload DataFrame to Hugging Face as CSV"""
try:
# Convert DataFrame to CSV string
csv_str = df.to_csv(index=False)
# Upload to Hugging Face
path_in_repo = f"data/{split}/kraken_trades.csv"
self.hf_api.upload_file(
path_or_fileobj=StringIO(csv_str),
path_in_repo=path_in_repo,
repo_id=self.repo_id,
repo_type="dataset"
)
logger.info(f"Successfully uploaded {split} data to Hugging Face")
except Exception as e:
logger.error(f"Error uploading to Hugging Face: {e}")
raise
def collect_and_upload(self, split: str, num_rows: int, delay: int = 2) -> None:
"""
Collect data and upload directly to Hugging Face
Args:
split: Data split type ('training', 'validation', 'test')
num_rows: Number of data points to collect per pair
delay: Delay between API calls in seconds
"""
try:
records = []
for i in range(num_rows):
logger.info(f"Collecting row {i+1}/{num_rows}")
for pair in self.pairs:
record = self.fetch_ticker_data(pair)
if record:
records.append(record)
if i < num_rows - 1: # Don't sleep after last iteration
time.sleep(delay) # Respect API rate limits
# Create DataFrame
df = pd.DataFrame(records)
# Upload to Hugging Face
self.upload_to_huggingface(df, split)
# Print data summary
logger.info("\nData Summary:")
logger.info(f"Total records: {len(records)}")
logger.info(f"Pairs collected: {len(df['pair'].unique())}")
logger.info(f"Time range: {df['timestamp'].min()} to {df['timestamp'].max()}")
except Exception as e:
logger.error(f"Error in data collection and upload: {e}")
raise
def main():
"""Main function to run data collection and upload"""
try:
# Initialize collector
collector = KrakenHuggingFaceCollector(
kraken_key_path="kraken.key",
hf_token="your_huggingface_token", # Replace with your token
repo_id="GotThatData/kraken-trading-data" # Replace with your repo name
)
# Collect and upload data for each split
splits_config = {
'training': 1000, # 1000 rows for training
'validation': 200, # 200 rows for validation
'test': 200 # 200 rows for test
}
for split, num_rows in splits_config.items():
logger.info(f"\nCollecting and uploading {split} data...")
collector.collect_and_upload(split=split, num_rows=num_rows)
logger.info("Data collection and upload completed successfully!")
except Exception as e:
logger.error(f"Fatal error: {e}")
raise
if __name__ == "__main__":
main() |