File size: 6,445 Bytes
57fdd71
 
 
 
 
 
 
b0118b9
 
57fdd71
 
 
 
 
 
 
 
 
 
 
 
b0118b9
 
57fdd71
b0118b9
 
 
57fdd71
b0118b9
57fdd71
 
b0118b9
 
 
 
 
 
 
 
 
 
 
57fdd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0118b9
57fdd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0118b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fdd71
b0118b9
57fdd71
b0118b9
57fdd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0118b9
57fdd71
 
b0118b9
 
57fdd71
 
 
 
 
 
 
 
b0118b9
57fdd71
 
 
b0118b9
57fdd71
 
b0118b9
 
 
 
 
57fdd71
b0118b9
57fdd71
 
 
 
 
 
 
b0118b9
 
57fdd71
b0118b9
57fdd71
 
b0118b9
57fdd71
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import krakenex
import pandas as pd
from datetime import datetime
import time
import os
from typing import Dict, List, Optional
import logging
from huggingface_hub import HfApi, login
from io import StringIO

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('kraken_data_collection.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class KrakenHuggingFaceCollector:
    """Handles data collection from Kraken and uploading to Hugging Face"""
    
    def __init__(self, kraken_key_path: str, hf_token: str, repo_id: str):
        # Initialize Kraken API
        self.kraken_api = krakenex.API()
        try:
            self.kraken_api.load_key(kraken_key_path)
            logger.info("Successfully loaded Kraken API key")
        except Exception as e:
            logger.error(f"Failed to load Kraken API key: {e}")
            raise

        # Initialize Hugging Face
        try:
            login(token=hf_token)
            self.hf_api = HfApi()
            self.repo_id = repo_id
            logger.info("Successfully logged in to Hugging Face")
        except Exception as e:
            logger.error(f"Failed to login to Hugging Face: {e}")
            raise
        
        # Trading pairs to collect data for
        self.pairs = [
            "XXBTZUSD",  # Bitcoin
            "XETHZUSD",  # Ethereum
            "XXRPZUSD",  # Ripple
            "ADAUSD",    # Cardano
            "DOGEUSD",   # Dogecoin
            "BNBUSD",    # Binance Coin
            "SOLUSD",    # Solana
            "DOTUSD",    # Polkadot
            "MATICUSD",  # Polygon
            "LTCUSD"     # Litecoin
        ]

    def fetch_ticker_data(self, pair: str) -> Optional[Dict]:
        """Fetch ticker data for a single pair"""
        try:
            response = self.kraken_api.query_public('Ticker', {'pair': pair})
            
            if 'error' in response and response['error']:
                logger.error(f"Kraken API error for {pair}: {response['error']}")
                return None
                
            data = response['result']
            pair_data = list(data.values())[0]
            
            return {
                'timestamp': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'),
                'pair': pair,
                'price': float(pair_data['c'][0]),    # Last trade closed price
                'volume': float(pair_data['v'][0]),   # 24h volume
                'bid': float(pair_data['b'][0]),      # Best bid
                'ask': float(pair_data['a'][0]),      # Best ask
                'low': float(pair_data['l'][0]),      # 24h low
                'high': float(pair_data['h'][0]),     # 24h high
                'vwap': float(pair_data['p'][0]),     # 24h VWAP
                'trades': int(pair_data['t'][0])      # Number of trades
            }
            
        except Exception as e:
            logger.error(f"Error fetching data for {pair}: {e}")
            return None

    def upload_to_huggingface(self, df: pd.DataFrame, split: str) -> None:
        """Upload DataFrame to Hugging Face as CSV"""
        try:
            # Convert DataFrame to CSV string
            csv_str = df.to_csv(index=False)
            
            # Upload to Hugging Face
            path_in_repo = f"data/{split}/kraken_trades.csv"
            
            self.hf_api.upload_file(
                path_or_fileobj=StringIO(csv_str),
                path_in_repo=path_in_repo,
                repo_id=self.repo_id,
                repo_type="dataset"
            )
            
            logger.info(f"Successfully uploaded {split} data to Hugging Face")
            
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face: {e}")
            raise

    def collect_and_upload(self, split: str, num_rows: int, delay: int = 2) -> None:
        """
        Collect data and upload directly to Hugging Face
        
        Args:
            split: Data split type ('training', 'validation', 'test')
            num_rows: Number of data points to collect per pair
            delay: Delay between API calls in seconds
        """
        try:
            records = []
            
            for i in range(num_rows):
                logger.info(f"Collecting row {i+1}/{num_rows}")
                
                for pair in self.pairs:
                    record = self.fetch_ticker_data(pair)
                    if record:
                        records.append(record)
                        
                if i < num_rows - 1:  # Don't sleep after last iteration
                    time.sleep(delay)  # Respect API rate limits
            
            # Create DataFrame
            df = pd.DataFrame(records)
            
            # Upload to Hugging Face
            self.upload_to_huggingface(df, split)
            
            # Print data summary
            logger.info("\nData Summary:")
            logger.info(f"Total records: {len(records)}")
            logger.info(f"Pairs collected: {len(df['pair'].unique())}")
            logger.info(f"Time range: {df['timestamp'].min()} to {df['timestamp'].max()}")
            
        except Exception as e:
            logger.error(f"Error in data collection and upload: {e}")
            raise

def main():
    """Main function to run data collection and upload"""
    try:
        # Initialize collector
        collector = KrakenHuggingFaceCollector(
            kraken_key_path="kraken.key",
            hf_token="your_huggingface_token",  # Replace with your token
            repo_id="GotThatData/kraken-trading-data"  # Replace with your repo name
        )
        
        # Collect and upload data for each split
        splits_config = {
            'training': 1000,    # 1000 rows for training
            'validation': 200,   # 200 rows for validation
            'test': 200         # 200 rows for test
        }
        
        for split, num_rows in splits_config.items():
            logger.info(f"\nCollecting and uploading {split} data...")
            collector.collect_and_upload(split=split, num_rows=num_rows)
            
        logger.info("Data collection and upload completed successfully!")
        
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise

if __name__ == "__main__":
    main()