kraken-trading-data / kraken-data-collection-script
GotThatData's picture
create
57fdd71 verified
raw
history blame
5.57 kB
import krakenex
import pandas as pd
from datetime import datetime
import time
import os
from typing import Dict, List, Optional
import logging
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('kraken_data_collection.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class KrakenDataCollector:
"""Handles data collection from Kraken API"""
def __init__(self, api_key_path: str):
self.api = krakenex.API()
try:
self.api.load_key(api_key_path)
logger.info("Successfully loaded Kraken API key")
except Exception as e:
logger.error(f"Failed to load API key: {e}")
raise
# Trading pairs to collect data for
self.pairs = [
"XXBTZUSD", # Bitcoin
"XETHZUSD", # Ethereum
"XXRPZUSD", # Ripple
"ADAUSD", # Cardano
"DOGEUSD", # Dogecoin
"BNBUSD", # Binance Coin
"SOLUSD", # Solana
"DOTUSD", # Polkadot
"MATICUSD", # Polygon
"LTCUSD" # Litecoin
]
def fetch_ticker_data(self, pair: str) -> Optional[Dict]:
"""Fetch ticker data for a single pair"""
try:
response = self.api.query_public('Ticker', {'pair': pair})
if 'error' in response and response['error']:
logger.error(f"Kraken API error for {pair}: {response['error']}")
return None
data = response['result']
pair_data = list(data.values())[0]
return {
'timestamp': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'),
'pair': pair,
'price': float(pair_data['c'][0]), # Last trade closed price
'volume': float(pair_data['v'][0]), # 24h volume
'bid': float(pair_data['b'][0]), # Best bid
'ask': float(pair_data['a'][0]), # Best ask
'low': float(pair_data['l'][0]), # 24h low
'high': float(pair_data['h'][0]), # 24h high
'vwap': float(pair_data['p'][0]), # 24h VWAP
'trades': int(pair_data['t'][0]) # Number of trades
}
except Exception as e:
logger.error(f"Error fetching data for {pair}: {e}")
return None
def create_data_directories(self) -> None:
"""Create directory structure for data storage"""
for split in ['training', 'validation', 'test']:
directory = f'data/{split}'
if not os.path.exists(directory):
os.makedirs(directory)
logger.info(f"Created directory: {directory}")
def save_data_to_csv(self, split: str, num_rows: int, delay: int = 2) -> None:
"""
Collect and save data for all pairs
Args:
split: Data split type ('training', 'validation', 'test')
num_rows: Number of data points to collect per pair
delay: Delay between API calls in seconds
"""
try:
records = []
for i in range(num_rows):
logger.info(f"Collecting row {i+1}/{num_rows}")
for pair in self.pairs:
record = self.fetch_ticker_data(pair)
if record:
records.append(record)
if i < num_rows - 1: # Don't sleep after last iteration
time.sleep(delay) # Respect API rate limits
# Create DataFrame and save to CSV
df = pd.DataFrame(records)
file_path = f"data/{split}/kraken_trades.csv"
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Save data
df.to_csv(file_path, index=False)
logger.info(f"Successfully saved {len(records)} records to {file_path}")
# Print data summary
logger.info("\nData Summary:")
logger.info(f"Total records: {len(records)}")
logger.info(f"Pairs collected: {len(df['pair'].unique())}")
logger.info(f"Time range: {df['timestamp'].min()} to {df['timestamp'].max()}")
except Exception as e:
logger.error(f"Error saving data: {e}")
raise
def main():
"""Main function to run data collection"""
try:
# Initialize collector
collector = KrakenDataCollector("kraken.key")
# Create directory structure
collector.create_data_directories()
# Collect data for each split
splits_config = {
'training': 1000, # 1000 rows for training
'validation': 200, # 200 rows for validation
'test': 200 # 200 rows for test
}
for split, num_rows in splits_config.items():
logger.info(f"\nCollecting {split} data...")
collector.save_data_to_csv(split=split, num_rows=num_rows)
logger.info("Data collection completed successfully!")
except Exception as e:
logger.error(f"Fatal error in data collection: {e}")
raise
if __name__ == "__main__":
main()