Datasets:
Tasks:
Token Classification
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Arabic
Size:
10K - 100K
License:
#!/usr/bin/env python3 | |
""" | |
make_split.py – Create **train / validation / test** splits for the | |
**ShamNER final release** and serialise **both JSONL and Parquet** versions. | |
Philosophy | |
---------------------- | |
* **No duplicate documents** – Originally a *document* was `(doc_name, round)`; each bundle | |
went to exactly one split. You can still see this in our commented code. | |
This rule is slightly relaxed now by post-allocation pruning, see below. | |
* **Rounds** – Six annotation iterations: | |
`pilot`, `round1`‑`round5` = manual (improving quality), `round6` = synthetic | |
post‑edited. Early rounds feed *train*, round5 + (filtered) round6 populate | |
*test*. | |
* **test set** – | |
* `test` ∶ span‑novel bundles from round5 **plus** span‑novel bundles from | |
round6 (synthetic see README). | |
* **Span novelty rule (Relaxed)** – Normalise every entity string (lower‑case, strip | |
Arabic diacritics & leading «ال», collapse whitespace). A bundle is initially forced | |
to *train* if **any** of its normalised spans already exists in train. | |
* **Tokeniser‑agnostic** – Data carries only raw `text` and character‑offset | |
`spans`. No BIO arrays. | |
Output files | |
------------ | |
``` | |
train.jsonl train.parquet | |
validation.jsonl validation.parquet | |
test.jsonl test.parquet | |
iaa_A.jsonl / iaa_A.parquet | |
iaa_B.jsonl / iaa_B.parquet | |
dataset_info.json | |
``` | |
A **post‑allocation cleanup** moves any *validation* or *test* sentence whose | |
normalised spans already appear in *train* back into **train**. This enforces | |
(nearly) strict span‑novelty for evaluation, even if an early bundle introduced a name | |
and a later bundle reused it. | |
A **post‑allocation cleanup** moves any *validation* or *test* sentence back into | |
**train** if a significant portion of its normalised spans already appear in | |
the `train` span set. This ensures a challenging evaluation set, though the strictness | |
has been relaxed from previous versions to allow for more learning examples in dev/test. | |
The current threshold for overlap is `0.50` (meaning a sentence is moved only if >50% of its | |
spans are already in train). | |
Current Results (with `prune_overlap` threshold 0.50): | |
------------------------------------------------------ | |
* **Validation rows moved to train**: ~411 (from previous ~553) | |
* **Test rows moved to train**: ~383 (from previous ~506) | |
* **Resulting Split Counts**: | |
* train: 19,532 rows (approx. 83.3%) | |
* validation: 1,931 rows (approx. 8.2%) | |
* test: 1,959 rows (approx. 8.4%) | |
* **Document bundles in >1 split**: 61 (a consequence of relaxed pruning) | |
* **Overall Test Set F1 (Top 5 labels)**: ~0.5225 (improved from ~0.42) | |
The revsion for novelty and overlap | |
----------------------------- | |
ROUND_ORDER controls processing order (earlier rounds fill quotas first). | |
DEV_FRAC / TEST_FRAC set target ratios. | |
normalise_span() holds the string-unification rules—easy to extend. | |
prune_overlap(threshold=0.10) is the soft cleanup; raise/lower the threshold to tighten or loosen leakage. | |
For this version, `prune_overlap` is called with `threshold=0.50`. | |
All file writing happens at the end. | |
--------------- | |
Keeps evaluation tough (mostly unseen names) without starving dev/test. | |
Guarantees no duplicate documents across splits. | |
Tokeniser-agnostic: any Arabic-BERT flavour can regenerate BIO tags on the fly. | |
One-file tweak regenerates looser or stricter splits on demand. | |
""" | |
from __future__ import annotations | |
import json, re, unicodedata, pathlib, collections, random | |
from typing import List, Dict, Tuple | |
from datasets import Dataset | |
# --------------------------- configuration ---------------------------------- | |
SEED = 42 | |
DEV_FRAC = 0.10 | |
TEST_FRAC = 0.10 | |
ROUND_ORDER = { | |
"pilot": 0, | |
"round1": 1, | |
"round2": 2, | |
"round3": 3, | |
"round4": 4, | |
"round5": 5, # assumed best manual round | |
"round6": 6, # synthetic examples (post‑edited, see README) | |
} | |
JSONL_FILES = { | |
"unique": "unique_sentences.jsonl", | |
"iaa_A": "iaa_A.jsonl", | |
"iaa_B": "iaa_B.jsonl", | |
} | |
# --------------------------- helpers ---------------------------------------- | |
Bundle = Tuple[str, str] # (doc_name, round) | |
Row = Dict[str, object] | |
AR_DIACRITICS_RE = re.compile(r"[\u0610-\u061A\u064B-\u065F\u06D6-\u06ED]") | |
AL_PREFIX_RE = re.compile(r"^ال(?=[\u0621-\u064A])") | |
MULTISPACE_RE = re.compile(r"\s+") | |
def normalise_span(text: str) -> str: | |
""" | |
Normalise a span string for novelty comparison only | |
(raw data remains unchanged). | |
""" | |
# remove Arabic diacritics and leading definite article | |
t = AR_DIACRITICS_RE.sub("", text) | |
t = AL_PREFIX_RE.sub("", t) | |
# Unicode normalise, lower-case, collapse runs of spaces | |
t = unicodedata.normalize("NFKC", t).lower() | |
t = MULTISPACE_RE.sub(" ", t) | |
# additional unification rules | |
t = re.sub(r"[أإآ]", "ا", t) # hamza forms → bare alef | |
t = re.sub(r"ه\b", "ة", t) # final ha → ta-marbuta | |
t = re.sub(r"ى", "ي", t) # maqsūra → yā’ | |
t = re.sub(r"\u0640", "", t) # strip tatweel | |
return t.strip() | |
def read_jsonl(path: pathlib.Path) -> List[Row]: | |
with path.open(encoding="utf-8") as fh: | |
return [json.loads(l) for l in fh] | |
def build_bundles(rows: List[Row]): | |
d: Dict[Bundle, List[Row]] = collections.defaultdict(list) | |
for r in rows: | |
d[(r["doc_name"], r["round"])].append(r) | |
return d | |
def span_set(rows: List[Row]) -> set[str]: | |
"""Collect normalised span strings from a list of sentence rows. | |
If a span dict lacks a explicit ``text`` key we fall back to slicing | |
``row['text'][start:end]``. Rows without usable span text are skipped. | |
""" | |
s: set[str] = set() | |
for r in rows: | |
sent_text = r.get("text", "") | |
for sp in r.get("spans", []): | |
raw = sp.get("text") | |
if raw is None and "start" in sp and "end" in sp: | |
raw = sent_text[sp["start"]: sp["end"]] | |
if raw: | |
s.add(normalise_span(raw)) | |
return s | |
# --------------------------- utilities -------------------------------------- | |
ID_FIELDS = ["doc_id", "sent_id", "orig_ID"] | |
def harmonise_id_types(rows: List[Row]): | |
"""Ensure every identifier field is stored consistently as *int*. | |
If a value is a digit‑only string it is cast to int; otherwise it is left | |
unchanged.""" | |
for r in rows: | |
for f in ID_FIELDS: | |
v = r.get(f) | |
if isinstance(v, str) and v.isdigit(): | |
r[f] = int(v) | |
# --------------------------- main ------------------------------------------- | |
# def prune_overlap(split_name: str, splits: Dict[str, List[Row]], lexicon: set[str]): | |
# """A post-procession cautious step: move sentences from *split_name* into *train* if any of their spans | |
# already exist in the `lexicon` (train span set). Updates `splits` in | |
# place and returns the number of rows moved.""" | |
# kept, moved = [], 0 | |
# for r in splits[split_name]: | |
# sent = r["text"] | |
# spans_here = {normalise_span(sp.get("text") or sent[sp["start"]:sp["end"]]) | |
# for sp in r["spans"]} | |
# if spans_here & lexicon: | |
# splits["train"].append(r) | |
# lexicon.update(spans_here) | |
# moved += 1 | |
# else: | |
# kept.append(r) | |
# splits[split_name] = kept | |
# return moved | |
def prune_overlap(split_name, splits, lexicon, threshold=0.10): | |
kept, moved = [], 0 | |
for r in splits[split_name]: | |
sent = r["text"] | |
spans_here = { | |
normalise_span(sp.get("text") or sent[sp["start"]:sp["end"]]) | |
for sp in r["spans"] | |
} | |
overlap_ratio = len(spans_here & lexicon) / max(1, len(spans_here)) | |
if overlap_ratio > threshold: | |
splits["train"].append(r) | |
lexicon.update(spans_here) | |
moved += 1 | |
else: | |
kept.append(r) | |
splits[split_name] = kept | |
return moved | |
def main(): | |
random.seed(SEED) | |
# 1. read corpus (single‑annotator view) | |
unique_rows = read_jsonl(pathlib.Path(JSONL_FILES["unique"])) | |
bundles = build_bundles(unique_rows) | |
# meta per bundle | |
meta = [] | |
for key, rows in bundles.items(): | |
rd_ord = ROUND_ORDER.get(key[1], 99) | |
meta.append({ | |
"key": key, "rows": rows, "spans": span_set(rows), | |
"size": len(rows), "rd": rd_ord, | |
}) | |
# sort bundles: early rounds first | |
meta.sort(key=lambda m: (m["rd"], m["key"])) | |
splits: Dict[str, List[Row]] = {n: [] for n in ["train", "validation", "test"]} | |
train_span_lex: set[str] = set() | |
corpus_size = sum(m["size"] for m in meta) # round6 included for quota calc | |
dev_quota = int(corpus_size * DEV_FRAC) | |
test_quota = int(corpus_size * TEST_FRAC) | |
for m in meta: | |
key, rows, spans, size, rd = m.values() | |
# if overlaps train lexicon -> train directly | |
if spans & train_span_lex: | |
splits["train"].extend(rows) | |
train_span_lex.update(spans) | |
continue | |
# span‑novel bundle: allocate dev/test quotas first | |
if len(splits["validation"]) < dev_quota: | |
splits["validation"].extend(rows) | |
elif len(splits["test"]) < test_quota: | |
splits["test"].extend(rows) | |
else: | |
# quotas filled – fallback to train | |
splits["train"].extend(rows) | |
train_span_lex.update(spans) | |
# 2a. post‑pass cleanup to guarantee span novelty ------------------------ | |
# mv_val = prune_overlap("validation", splits, train_span_lex) | |
# mv_test = prune_overlap("test", splits, train_span_lex) | |
# mv_val = prune_overlap("validation", splits, train_span_lex, 0.10) | |
# mv_test = prune_overlap("test", splits, train_span_lex, 0.10) | |
mv_val = prune_overlap("validation", splits, train_span_lex, threshold=0.50) # New threshold | |
mv_test = prune_overlap("test", splits, train_span_lex, threshold=0.50) # New threshold | |
print(f"Moved {mv_val} val and {mv_test} test rows back to train due to span overlap.") | |
# 2b. iaa views unchanged ---------------------------------------------- | |
iaa_A_rows = read_jsonl(pathlib.Path(JSONL_FILES["iaa_A"])) | |
iaa_B_rows = read_jsonl(pathlib.Path(JSONL_FILES["iaa_B"])) | |
out_dir = pathlib.Path(".") | |
for name, rows in {**splits, "iaa_A": iaa_A_rows, "iaa_B": iaa_B_rows}.items(): | |
harmonise_id_types(rows) | |
json_path = out_dir / f"{name}.jsonl" | |
with json_path.open("w", encoding="utf-8") as fh: | |
for r in rows: | |
fh.write(json.dumps(r, ensure_ascii=False) + "\n") | |
Dataset.from_list(rows).to_parquet(out_dir / f"{name}.parquet") | |
print(f"-> {name}: {len(rows):,} rows → .jsonl & .parquet") | |
print("--> all splits done.") | |
if __name__ == "__main__": | |
main() |