# sanity_check_split.py (overwrite previous) from pathlib import Path import json, re, unicodedata, collections from datasets import load_dataset from itertools import chain # ---------- helpers ---------------------------------------------------------- AR_DIACRITICS_RE = re.compile(r"[\u0610-\u061A\u064B-\u065F\u06D6-\u06ED]") AL_PREFIX_RE = re.compile(r"^ال(?=[\u0621-\u064A])") MULTISPACE_RE = re.compile(r"\s+") def norm(txt): t = AR_DIACRITICS_RE.sub("", txt) t = AL_PREFIX_RE.sub("", t) t = unicodedata.normalize("NFKC", t).lower() return MULTISPACE_RE.sub(" ", t).strip() def read_jsonl(p): with open(p, encoding="utf-8") as fh: for line in fh: yield json.loads(line) def span_strings(row): sent = row["text"] for sp in row["spans"]: raw = sp.get("text") or sent[sp["start"]: sp["end"]] if raw: yield norm(raw) # ---------- 1. size check ---------------------------------------------------- splits = {"train": "train.jsonl", "validation": "validation.jsonl", "test": "test.jsonl"} sizes = {k: sum(1 for _ in read_jsonl(Path(v))) for k, v in splits.items()} print("Sentence counts:", sizes) # ---------- 2. doc leakage --------------------------------------------------- seen = {} dups = [] for split, path in splits.items(): for row in read_jsonl(Path(path)): key = (row["doc_name"], row["round"]) if key in seen and seen[key] != split: dups.append((key, seen[key], split)) seen[key] = split print("Document bundles in >1 split:", len(dups)) # ---------- 3. span novelty -------------------------------------------------- train_spans = set(chain.from_iterable(span_strings(r) for r in read_jsonl(Path("train.jsonl")))) overlaps = collections.Counter() for split in ["validation", "test"]: for row in read_jsonl(Path(f"{split}.jsonl")): if any(n in train_spans for n in span_strings(row)): overlaps[split] += 1 print("Sentences in dev/test with SEEN spans:", dict(overlaps)) # ---------- 4. HF Datasets smoke-load --------------------------------------- ds = load_dataset("parquet", data_files={"train": "train.parquet", "validation": "validation.parquet", "test": "test.parquet"}, split=None) print("load_dataset OK:", {k: len(v) for k, v in ds.items()})