File size: 234,549 Bytes
96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 1447e7b 96d06f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
# DDIM反转
在此篇笔记我们会来探索**反转**,看看它是如何影响采样的,并把它应用到扩散模型的编辑图像功能中去。
## 你将会学到什么
- DDIM采样是怎么工作的
- 确定性vs随机性采样器
- DDIM反转的理论支撑
- 使用反转来编辑图像
我们开始吧!
## 设置
```python
# !pip install -q transformers diffusers accelerate
```
```python
import torch
import requests
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from io import BytesIO
from tqdm.auto import tqdm
from matplotlib import pyplot as plt
from torchvision import transforms as tfms
from diffusers import StableDiffusionPipeline, DDIMScheduler
# Useful function for later
def load_image(url, size=None):
response = requests.get(url,timeout=0.2)
img = Image.open(BytesIO(response.content)).convert('RGB')
if size is not None:
img = img.resize(size)
return img
```
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
## 加载一个已训练的pipeline
```python
# Load a pipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
```
```python
# Set up a DDIM scheduler:
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
```
```python
# Sample an image to make sure it is all working
prompt = 'Beautiful DSLR Photograph of a penguin on the beach, golden hour'
negative_prompt = 'blurry, ugly, stock photo'
im = pipe(prompt, negative_prompt=negative_prompt).images[0]
im.resize((256, 256)) # resize for convenient viewing
```
## DDIM取样过程
在给定时间 $t$, 带噪图像 $x_t$ 是原始图像($x_0$)与噪声 ($\epsilon$)的叠加。这是在DDIM论文中$x_t$的定义式,我们把它引用到此节里:
$$ x_t = \sqrt{\alpha_t}x_0 + \sqrt{1-\alpha_t}\epsilon $$
$\epsilon$ 是归一方差的高斯噪声
$\alpha_t$ ('alpha')在DDPM论文中也被叫做$\bar{\alpha}$ ('alpha_bar'),被用来定义噪声调度器(scheduler)。在扩散模型中,alpha调度器是被计算出来并被排序存储在`scheduler.alphas_cumprod`中。这有点令人困惑,我理解!我们来把这些值画出来,并在下文中我们会使用DDIM的标注方式。
```python
# Plot 'alpha' (alpha_bar in DDPM language, alphas_cumprod in diffusers for clarity)
timesteps = pipe.scheduler.timesteps.cpu()
alphas = pipe.scheduler.alphas_cumprod[timesteps]
plt.plot(timesteps, alphas, label='alpha_t');
plt.legend();
```
最初(timestep 0 ,图中左侧)是从一个无噪的干净图像开始,$\alpha_t = 1$。当我们到达更高的迭代周期(timesteps),我们得到一个几乎全是噪声的图像,$\alpha_t$也几乎下降到0。
在采样过程,我们从timestep1000的纯噪声开始,慢慢地向timestep0前进。为了计算采样轨迹中的下一时刻($x_{t-1}$ 因为我们是从后向前移动)的值,我们预测噪声($\epsilon_\theta(x_t)$,这就是我们模型的输出),用它来预测出无噪的图片$x_0$。在这之后我们用这个预测结果朝着'$x_t$的方向'方向移动一小步。最终,我们可以加一些带$\sigma_t$系数的额外噪声。这是论文中与上述操作相关的章节内容:

好,我们有了在可控量度噪声下,从$x_t$ 移动到 $x_{t-1}$的公式。今天我们所使用的案例是不需要再额外添加噪声的 - 即完全确定的DDIM采样。我们来看看这些是如何用代码表达的。
```python
# Sample function (regular DDIM)
@torch.no_grad()
def sample(prompt, start_step=0, start_latents=None,
guidance_scale=3.5, num_inference_steps=30,
num_images_per_prompt=1, do_classifier_free_guidance=True,
negative_prompt='', device=device):
# Encode prompt
text_embeddings = pipe._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Set num inference steps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
# Create a random starting point if we don't have one already
if start_latents is None:
start_latents = torch.randn(1, 4, 64, 64, device=device)
start_latents *= pipe.scheduler.init_noise_sigma
latents = start_latents.clone()
for i in tqdm(range(start_step, num_inference_steps)):
t = pipe.scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Normally we'd rely on the scheduler to handle the update step:
# latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Instead, let's do it ourselves:
prev_t = max(1, t.item() - (1000//num_inference_steps)) # t-1
alpha_t = pipe.scheduler.alphas_cumprod[t.item()]
alpha_t_prev = pipe.scheduler.alphas_cumprod[prev_t]
predicted_x0 = (latents - (1-alpha_t).sqrt()*noise_pred) / alpha_t.sqrt()
direction_pointing_to_xt = (1-alpha_t_prev).sqrt()*noise_pred
latents = alpha_t_prev.sqrt()*predicted_x0 + direction_pointing_to_xt
# Post-processing
images = pipe.decode_latents(latents)
images = pipe.numpy_to_pil(images)
return images
```
```python
# Test our sampling function by generating an image
sample('Watercolor painting of a beach sunset', negative_prompt=negative_prompt, num_inference_steps=50)[0].resize((256, 256))
```
看看你是否能把这些代码和论文中的公式对应起来。注意$\sigma$=0是因为我们只注意 无-额外-噪声 的场景,所以我们略去了公式中的那部分。
## 反转
反转的目标就是'颠倒'取样的过程。我们想最终得到一个带噪的隐式(latent),如果把它作为我们正常取样过程的起始点,结果将生成一副原图像。
这里我们先加载一个原始图像,当然你也可以生成一副图像来代替。
```python
# https://www.pexels.com/photo/a-beagle-on-green-grass-field-8306128/
input_image = load_image('https://images.pexels.com/photos/8306128/pexels-photo-8306128.jpeg', size=(512, 512))
input_image
```
我们可以用包含随意分类指引(classifier-free-guidance)的prompt来做反转操作,输入一个图片的描述:
```python
input_image_prompt = "Photograph of a puppy on the grass"
```
接下来我们来把这个PIL图像变成一些列隐式,它们会被用来当作反转的起点:
```python
# encode with VAE
with torch.no_grad(): latent = pipe.vae.encode(tfms.functional.to_tensor(input_image).unsqueeze(0).to(device)*2-1)
l = 0.18215 * latent.latent_dist.sample()
```
好了,到有趣的部分了。这个函数看起来和上面的取样函数很像,但我们在timesteps上是在向相反的方向移动,从t=0开始,向越来越多的噪声前进。代替更新隐式时噪声会越来越少,我们估计所预测出的噪声,用它来撤回一步更新操作,把它们从t移动到t+1。
```python
## Inversion
@torch.no_grad()
def invert(start_latents, prompt, guidance_scale=3.5, num_inference_steps=80,
num_images_per_prompt=1, do_classifier_free_guidance=True,
negative_prompt='', device=device):
# Encode prompt
text_embeddings = pipe._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# latents are now the specified start latents
latents = start_latents.clone()
# We'll keep a list of the inverted latents as the process goes on
intermediate_latents = []
# Set num inference steps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
timesteps = reversed(pipe.scheduler.timesteps)
for i in tqdm(range(1, num_inference_steps), total=num_inference_steps-1):
# We'll skip the final iteration
if i >= num_inference_steps - 1: continue
t = timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
current_t = max(0, t.item() - (1000//num_inference_steps))#t
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1
alpha_t = pipe.scheduler.alphas_cumprod[current_t]
alpha_t_next = pipe.scheduler.alphas_cumprod[next_t]
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
latents = (latents - (1-alpha_t).sqrt()*noise_pred)*(alpha_t_next.sqrt()/alpha_t.sqrt()) + (1-alpha_t_next).sqrt()*noise_pred
# Store
intermediate_latents.append(latents)
return torch.cat(intermediate_latents)
```
把它在小狗图片的隐式表达上运行,我们可以在反转的中间过程得到一系列的隐式:
```python
inverted_latents = invert(l, input_image_prompt,num_inference_steps=50)
inverted_latents.shape
```
0%| | 0/49 [00:00<?, ?it/s]
torch.Size([48, 4, 64, 64])
我们可以来看一下最终的隐式 - 希望这可以作为我们尝试新的取样过程的起点噪声:
```python
# Decode the final inverted latents:
with torch.no_grad():
im = pipe.decode_latents(inverted_latents[-1].unsqueeze(0))
pipe.numpy_to_pil(im)[0]
```

你可以把这个反转隐式通过正常的 __call__ 方法来传递给pipeline。
```python
pipe(input_image_prompt, latents=inverted_latents[-1][None], num_inference_steps=50, guidance_scale=3.5).images[0]
```
0%| | 0/50 [00:00<?, ?it/s]

但这里我们遇见了第一个问题:这 **并不是我们一开始使用的那张图片**!这是因为DDIM的反转依赖一个重要假设:在t时刻预测的噪声与t+1时刻会是相同的 - 这在我们只反转50或100步时是不陈立的。我们可以寄希望于更多的timesteps开得到一个更准确的反转,但我们也可以'作弊'一下,就是说直接从做对应反转过程中的第20/50步的隐式开始:
```python
# The reason we want to be able to specify start step
start_step=20
sample(input_image_prompt, start_latents=inverted_latents[-(start_step+1)][None],
start_step=start_step, num_inference_steps=50)[0]
```
0%| | 0/30 [00:00<?, ?it/s]

距离我们的输入图像已经很接近了!我们为什么要这么做?嗯,这是因为如果我们现在若要用一个新的prompt来生成图像,我们会得到一个匹配于源图像,除了,与新prompt相关的内容。例如,把'小狗'替换为'猫',我们能看到一只猫在几乎一样草地背景上:
```python
# Sampling with a new prompt
start_step=10
new_prompt = input_image_prompt.replace('puppy', 'cat')
sample(new_prompt, start_latents=inverted_latents[-(start_step+1)][None],
start_step=start_step, num_inference_steps=50)[0]
```
0%| | 0/40 [00:00<?, ?it/s]

### 为什么不直接用 img2img?
为什么要做反转,不是多此一举吗?为什么不直接对输入图片加入噪声,然后用新的promt直接来去噪呢?我们可以这么做,但这会带来一个到处都被改变得夸张得多的照片(如果我们加入了很多噪声),或哪也没怎么变的图像(如果加了太少的噪声)。来自己试试:
```python
start_step = 10
num_inference_steps=50
pipe.scheduler.set_timesteps(num_inference_steps)
noisy_l = pipe.scheduler.add_noise(l, torch.randn_like(l), pipe.scheduler.timesteps[start_step])
sample(new_prompt, start_latents=noisy_l, start_step=start_step, num_inference_steps=num_inference_steps)[0]
```
0%| | 0/40 [00:00<?, ?it/s]

注意背景和草坪有着非常大的变化。
# 把它们都组装起来
来把我们目前所写的代码都组装在一个简单的函数里,输入一张图像和两个prompts,就会得到一个通过反转得到的修改后的图片:
```python
def edit(input_image, input_image_prompt, edit_prompt, num_steps=100, start_step=30, guidance_scale=3.5):
with torch.no_grad(): latent = pipe.vae.encode(tfms.functional.to_tensor(input_image).unsqueeze(0).to(device)*2-1)
l = 0.18215 * latent.latent_dist.sample()
inverted_latents = invert(l, input_image_prompt,num_inference_steps=num_steps)
final_im = sample(edit_prompt, start_latents=inverted_latents[-(start_step+1)][None],
start_step=start_step, num_inference_steps=num_steps, guidance_scale=guidance_scale)[0]
return final_im
```
And in action:
实际操作起来:
```python
edit(input_image, 'A puppy on the grass', 'an old grey dog on the grass', num_steps=50, start_step=10)
```
0%| | 0/49 [00:00<?, ?it/s]
0%| | 0/40 [00:00<?, ?it/s]

```python
edit(input_image, 'A puppy on the grass', 'A blue dog on the lawn', num_steps=50, start_step=12, guidance_scale=6)
```
0%| | 0/49 [00:00<?, ?it/s]
0%| | 0/38 [00:00<?, ?it/s]

```python
# Exercise: Try this on some more images! Explore the different parameters
```
## 更多迭代 = 更好的表现
如果你因为反转结果不准确而烦恼,你可以试试多迭代几次(代价就是更长的运行时间)。为了测试一下反转过程,你可以使用这里的edit函数并输入相同的prompt:
```python
# Inversion test with far more steps:
edit(input_image, 'A puppy on the grass', 'A puppy on the grass', num_steps=350, start_step=1)
```
0%| | 0/349 [00:00<?, ?it/s]
0%| | 0/349 [00:00<?, ?it/s]

好多了!来试试用它编辑图片:
```python
edit(input_image, 'A photograph of a puppy', 'A photograph of a grey cat', num_steps=150, start_step=30, guidance_scale=5.5)
```
0%| | 0/149 [00:00<?, ?it/s]
0%| | 0/120 [00:00<?, ?it/s]

```python
# source: https://www.pexels.com/photo/girl-taking-photo-1493111/
face = load_image('https://images.pexels.com/photos/1493111/pexels-photo-1493111.jpeg', size=(512, 512))
face
```

```python
edit(face, 'A photograph of a face', 'A photograph of a face with sunglasses', num_steps=250, start_step=30, guidance_scale=3.5)
```
0%| | 0/249 [00:00<?, ?it/s]
0%| | 0/220 [00:00<?, ?it/s]

```python
edit(face, 'A photograph of a face', 'Acrylic palette knife painting of a face, colorful', num_steps=250, start_step=65, guidance_scale=5.5)
```
0%| | 0/249 [00:00<?, ?it/s]
0%| | 0/185 [00:00<?, ?it/s]

# 接下来会是?
有了此篇笔记的帮助,我建议你再研究下['Null-text Inversion'](https://null-text-inversion.github.io/),它是基于DDIM来优化空文本(无条件文字prompt)的反转过程,有着更准确的反转与更好的编辑效果。
|