SwathiManikya commited on
Commit
3119764
·
verified ·
1 Parent(s): 6bea6cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # HLO Feature Dataset for Deep Learning Workloads
6
+
7
+ [![Dataset](https://img.shields.io/badge/HuggingFace-Dataset-yellow)](https://huggingface.co/datasets/your-username/hlo-feature-dataset)
8
+
9
+ ## Dataset Summary
10
+ The **HLO Feature Dataset** provides High-Level Optimizer (HLO) graph features extracted from various deep learning model training runs. Each sample represents a unique configuration of neural network training, paired with graph-based features suitable for machine learning tasks such as:
11
+
12
+ - Runtime and resource prediction
13
+ - AI workload optimization in HPC environments
14
+ - Graph neural network (GNN) research on compiler-level representations
15
+ - Scheduling and efficiency analysis for GPU-based training
16
+
17
+ The dataset includes metadata for each training run and corresponding `.npz` files containing serialized HLO graph features.
18
+
19
+ ---
20
+
21
+ ## Supported Tasks and Benchmarks
22
+ - 🕒 **Runtime Prediction**
23
+ - 📊 **Resource Utilization Estimation**
24
+ - ⚙️ **Graph-Based Neural Architecture Analysis**
25
+ - 🚀 **HPC & GPU Scheduling Optimization**
26
+
27
+ This dataset can be used to train models that predict execution time, memory usage, or optimize scheduling strategies based on compiler graph features.
28
+
29
+ ---
30
+
31
+ ## Dataset Structure
32
+
33
+ Each sample consists of:
34
+ - **Metadata**: Model configuration, hardware specs, and performance metrics (from `dataset-new.csv`).
35
+ - **HLO Graph Features**: Stored in `.npz` files containing:
36
+ - `node_opcode`: Operation codes
37
+ - `node_feat`: Node feature matrix
38
+ - `edge_index`: Graph topology
39
+ - `node_config_ids`: Config identifiers
40
+ - `node_splits`: Graph partition info
41
+
42
+ ---
43
+
44
+ ## Features
45
+ | Feature | Type | Description |
46
+ |--------------------|----------|--------------------------------------|
47
+ | name | string | Model name |
48
+ | optimizer | string | Optimizer used |
49
+ | batch, epochs | int | Training parameters |
50
+ | learn_rate | float | Learning rate |
51
+ | gpu_name | string | GPU model |
52
+ | fit_time | float | Total training time |
53
+ | npz_path | string | Path to HLO feature `.npz` file |
54
+ | ... | ... | Additional GPU & utilization metrics |
55
+
56
+ The `.npz` file contains graph data relevant for GNNs or ML models.
57
+
58
+ ---
59
+
60
+ ## Usage Example
61
+
62
+ ```python
63
+ from datasets import load_dataset
64
+ import numpy as np
65
+
66
+ # Load metadata
67
+ dataset = load_dataset("your-username/hlo-feature-dataset")
68
+ sample = dataset['train'][0]
69
+
70
+ # Load HLO features
71
+ npz_file = sample['npz_path']
72
+ data = np.load(npz_file)
73
+
74
+ node_features = data['node_feat']
75
+ edges = data['edge_index']