Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# HLO Feature Dataset for Deep Learning Resource Estimation
|
3 |
|
@@ -100,4 +167,4 @@ Specify your license here (e.g., MIT, Apache-2.0).
|
|
100 |
---
|
101 |
|
102 |
## Contributions
|
103 |
-
Open to contributions! Feel free to suggest improvements or share your models trained on this dataset.
|
|
|
1 |
+
---
|
2 |
+
dataset_name: "hlo-feature-dataset"
|
3 |
+
pretty_name: "HLO Feature Dataset for Deep Learning Resource Estimation"
|
4 |
+
dataset_type: "graph-and-tabular"
|
5 |
+
license: "apache-2.0"
|
6 |
+
task_categories:
|
7 |
+
- time-series-forecasting
|
8 |
+
- regression
|
9 |
+
- graph-machine-learning
|
10 |
+
language: "en"
|
11 |
+
tags:
|
12 |
+
- HPC
|
13 |
+
- resource-prediction
|
14 |
+
- XLA
|
15 |
+
- compiler-features
|
16 |
+
- deep-learning
|
17 |
+
- graph-learning
|
18 |
+
- scheduling
|
19 |
+
size_categories:
|
20 |
+
- 1K<n<10K
|
21 |
+
source_datasets:
|
22 |
+
- custom
|
23 |
+
dataset_summary: >
|
24 |
+
The HLO Feature Dataset contains High-Level Optimizer (HLO) graph features and metadata extracted
|
25 |
+
from deep learning training workloads. It is designed for tasks such as runtime prediction, resource
|
26 |
+
estimation, and graph-based machine learning in HPC environments.
|
27 |
+
|
28 |
+
Each entry pairs model configuration metadata with compiler graph data stored in `.npz` format.
|
29 |
+
|
30 |
+
Ideal for ML system optimization studies, GNN research, and AI workload scheduling.
|
31 |
+
|
32 |
+
structured_data:
|
33 |
+
features:
|
34 |
+
- name: "batch"
|
35 |
+
type: "integer"
|
36 |
+
- name: "epochs"
|
37 |
+
type: "integer"
|
38 |
+
- name: "learn_rate"
|
39 |
+
type: "float"
|
40 |
+
- name: "gpu_core_count"
|
41 |
+
type: "integer"
|
42 |
+
- name: "gpu_memory_size"
|
43 |
+
type: "integer"
|
44 |
+
- name: "fit_time"
|
45 |
+
type: "float"
|
46 |
+
- name: "npz_path"
|
47 |
+
type: "string"
|
48 |
+
graph_data:
|
49 |
+
node_features: "node_feat"
|
50 |
+
edge_index: "edge_index"
|
51 |
+
additional_keys:
|
52 |
+
- "node_opcode"
|
53 |
+
- "node_config_ids"
|
54 |
+
- "node_splits"
|
55 |
+
usage_example: |
|
56 |
+
```python
|
57 |
+
from datasets import load_dataset
|
58 |
+
import numpy as np
|
59 |
+
|
60 |
+
dataset = load_dataset("your-username/hlo-feature-dataset")
|
61 |
+
sample = dataset['train'][0]
|
62 |
+
|
63 |
+
graph_data = np.load(sample['npz_path'])
|
64 |
+
node_features = graph_data['node_feat']
|
65 |
+
edges = graph_data['edge_index']
|
66 |
+
|
67 |
+
---
|
68 |
|
69 |
# HLO Feature Dataset for Deep Learning Resource Estimation
|
70 |
|
|
|
167 |
---
|
168 |
|
169 |
## Contributions
|
170 |
+
Open to contributions! Feel free to suggest improvements or share your models trained on this dataset.
|