Datasets:
Upload Baseline_XGBoost_Resource_Estimation.ipynb
Browse files
Baseline_XGBoost_Resource_Estimation.ipynb
ADDED
@@ -0,0 +1,1527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "e5e0f994"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# 🚀 Baseline XGBoost for Resource Estimation of CNNs (Keras Applications)\n",
|
10 |
+
"This notebook demonstrates how to use XGBoost for predicting resource usage (like fit time) of CNN models based on dataset features."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "275c013b"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"## 1️⃣ Setup and Installation\n",
|
20 |
+
"Ensure required libraries are installed."
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 1,
|
26 |
+
"metadata": {
|
27 |
+
"colab": {
|
28 |
+
"base_uri": "https://localhost:8080/"
|
29 |
+
},
|
30 |
+
"id": "DPbLUZKvRtwx",
|
31 |
+
"outputId": "d65bcfd7-a615-4b74-feb6-757456f42581"
|
32 |
+
},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"output_type": "stream",
|
36 |
+
"name": "stdout",
|
37 |
+
"text": [
|
38 |
+
"Found existing installation: scikit-learn 1.6.1\n",
|
39 |
+
"Uninstalling scikit-learn-1.6.1:\n",
|
40 |
+
" Successfully uninstalled scikit-learn-1.6.1\n",
|
41 |
+
"Collecting scikit-learn==1.5.2\n",
|
42 |
+
" Downloading scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (13 kB)\n",
|
43 |
+
"Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/dist-packages (from scikit-learn==1.5.2) (2.0.2)\n",
|
44 |
+
"Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn==1.5.2) (1.14.1)\n",
|
45 |
+
"Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn==1.5.2) (1.4.2)\n",
|
46 |
+
"Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn==1.5.2) (3.6.0)\n",
|
47 |
+
"Downloading scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n",
|
48 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.3/13.3 MB\u001b[0m \u001b[31m34.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
49 |
+
"\u001b[?25hInstalling collected packages: scikit-learn\n",
|
50 |
+
"Successfully installed scikit-learn-1.5.2\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"!pip uninstall -y scikit-learn\n",
|
56 |
+
"!pip install scikit-learn==1.5.2"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "markdown",
|
61 |
+
"metadata": {
|
62 |
+
"id": "48b0b5f0"
|
63 |
+
},
|
64 |
+
"source": [
|
65 |
+
"## 2️⃣ Import Libraries\n",
|
66 |
+
"Import all necessary Python libraries for data handling, modeling, and visualization."
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 2,
|
72 |
+
"metadata": {
|
73 |
+
"id": "V23vhp8o9YHM"
|
74 |
+
},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"import pandas as pd\n",
|
78 |
+
"import numpy as np\n",
|
79 |
+
"from sklearn.model_selection import train_test_split\n",
|
80 |
+
"from sklearn.metrics import mean_squared_error\n",
|
81 |
+
"from xgboost import XGBRegressor\n",
|
82 |
+
"import joblib"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "markdown",
|
87 |
+
"metadata": {
|
88 |
+
"id": "107733d4"
|
89 |
+
},
|
90 |
+
"source": [
|
91 |
+
"## 3️⃣ Data Loading & Preprocessing\n",
|
92 |
+
"Load the dataset and perform basic preprocessing to prepare for modeling."
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 3,
|
98 |
+
"metadata": {
|
99 |
+
"id": "UoYmjX7NGVVD"
|
100 |
+
},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"def calculate_mspe_rmspe(y_true, y_pred):\n",
|
104 |
+
" mape = np.mean(np.abs((y_true - y_pred) / (y_true)), axis=0) * 100\n",
|
105 |
+
" mspe = np.mean(((y_true - y_pred) / y_true) ** 2, axis=0) * 100 # MSPE for each column\n",
|
106 |
+
" rmspe = np.sqrt(mspe) # RMSPE for each column\n",
|
107 |
+
" return mape, mspe, rmspe\n",
|
108 |
+
"\n"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 7,
|
114 |
+
"metadata": {
|
115 |
+
"colab": {
|
116 |
+
"base_uri": "https://localhost:8080/"
|
117 |
+
},
|
118 |
+
"id": "CmmE7SNz-KXJ",
|
119 |
+
"outputId": "dc55b8bf-2000-4954-b231-664d715851de"
|
120 |
+
},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"output_type": "execute_result",
|
124 |
+
"data": {
|
125 |
+
"text/plain": [
|
126 |
+
"Index(['name', 'samples', 'input_dim_w', 'input_dim_h', 'input_dim_c',\n",
|
127 |
+
" 'output_dim', 'optimizer', 'epochs', 'batch', 'learn_rate',\n",
|
128 |
+
" 'tf_version', 'cuda_version', 'batch_time', 'epoch_time', 'fit_time',\n",
|
129 |
+
" 'npz_path', 'gpu_make', 'gpu_name', 'gpu_arch', 'gpu_cc',\n",
|
130 |
+
" 'gpu_core_count', 'gpu_sm_count', 'gpu_memory_size', 'gpu_memory_type',\n",
|
131 |
+
" 'gpu_memory_bw', 'gpu_tensor_core_count', 'max_memory_util',\n",
|
132 |
+
" 'avg_memory_util', 'max_gpu_util', 'avg_gpu_util', 'max_gpu_temp',\n",
|
133 |
+
" 'avg_gpu_temp'],\n",
|
134 |
+
" dtype='object')"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"metadata": {},
|
138 |
+
"execution_count": 7
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"source": [
|
142 |
+
"# Load data\n",
|
143 |
+
"# Assuming the data is in a CSV file with the target column 'fit_time_in_TF'\n",
|
144 |
+
"data_path = 'dataset-new.csv' # Replace with the actual path to your dataset\n",
|
145 |
+
"df = pd.read_csv(data_path)\n",
|
146 |
+
"df.columns"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "markdown",
|
151 |
+
"metadata": {
|
152 |
+
"id": "962d5030"
|
153 |
+
},
|
154 |
+
"source": [
|
155 |
+
"## 4️⃣ Feature Engineering\n",
|
156 |
+
"Extract relevant features and clean the dataset."
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 8,
|
162 |
+
"metadata": {
|
163 |
+
"colab": {
|
164 |
+
"base_uri": "https://localhost:8080/"
|
165 |
+
},
|
166 |
+
"id": "OGzq5lrIHh2R",
|
167 |
+
"outputId": "9ee9eabd-7363-451a-b379-013b1aa7688d"
|
168 |
+
},
|
169 |
+
"outputs": [
|
170 |
+
{
|
171 |
+
"output_type": "stream",
|
172 |
+
"name": "stdout",
|
173 |
+
"text": [
|
174 |
+
" name unit_name\n",
|
175 |
+
"0 MobileNet_architecture_optadam_s1_ipd224x224x3... MobileNet\n",
|
176 |
+
"1 MobileNet_architecture_optadam_s1_ipd224x224x3... MobileNet\n",
|
177 |
+
"2 MobileNet_architecture_optadam_s1_ipd224x224x3... MobileNet\n",
|
178 |
+
"3 MobileNet_architecture_optadam_s1_ipd224x224x3... MobileNet\n",
|
179 |
+
"4 MobileNet_architecture_optadam_s1_ipd224x224x3... MobileNet\n"
|
180 |
+
]
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"# Extract substring before the first underscore\n",
|
185 |
+
"df['unit_name'] = df['name'].str.split('_').str[0]\n",
|
186 |
+
"\n",
|
187 |
+
"# Display the updated DataFrame\n",
|
188 |
+
"print(df[['name', 'unit_name']].head())"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": 9,
|
194 |
+
"metadata": {
|
195 |
+
"colab": {
|
196 |
+
"base_uri": "https://localhost:8080/"
|
197 |
+
},
|
198 |
+
"id": "mw1fY7vM-fCw",
|
199 |
+
"outputId": "a8903a63-83f3-4b6f-b061-4a4bb900cd1d"
|
200 |
+
},
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"output_type": "stream",
|
204 |
+
"name": "stdout",
|
205 |
+
"text": [
|
206 |
+
"\n",
|
207 |
+
"Label Mapping: {'DenseNet121': 0, 'DenseNet169': 1, 'DenseNet201': 2, 'EfficientNetB0': 3, 'EfficientNetB1': 4, 'EfficientNetB7': 5, 'InceptionV3': 6, 'MobileNet': 7, 'MobileNetV2': 8, 'NASNetLarge': 9, 'NASNetMobile': 10, 'ResNet101': 11, 'ResNet152': 12, 'ResNet50': 13, 'VGG16': 14, 'VGG19': 15, 'Xception': 16}\n"
|
208 |
+
]
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"source": [
|
212 |
+
"df = df.dropna() # Dropping rows with missing values (you can customize this)\n",
|
213 |
+
"\n",
|
214 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
215 |
+
"label_encoder = LabelEncoder()\n",
|
216 |
+
"# Transform the categorical column\n",
|
217 |
+
"df['unit_name_encoded'] = label_encoder.fit_transform(df['unit_name'])\n",
|
218 |
+
"# Optional: Mapping of encoded labels to original categories\n",
|
219 |
+
"mapping = dict(zip(label_encoder.classes_, range(len(label_encoder.classes_))))\n",
|
220 |
+
"print(\"\\nLabel Mapping:\", mapping)\n",
|
221 |
+
"\n",
|
222 |
+
"df = df.drop(columns=['name', 'npz_path', 'unit_name'])\n",
|
223 |
+
"# Convert categorical features to numeric (if any)\n",
|
224 |
+
"df = pd.get_dummies(df, drop_first=True)\n"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": 10,
|
230 |
+
"metadata": {
|
231 |
+
"colab": {
|
232 |
+
"base_uri": "https://localhost:8080/",
|
233 |
+
"height": 290
|
234 |
+
},
|
235 |
+
"id": "04XJeqln-g4n",
|
236 |
+
"outputId": "f63e3507-6770-41be-dc9c-b03a3cb232a6"
|
237 |
+
},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"output_type": "execute_result",
|
241 |
+
"data": {
|
242 |
+
"text/plain": [
|
243 |
+
" samples input_dim_w input_dim_h input_dim_c output_dim epochs batch \\\n",
|
244 |
+
"0 1 224 224 3 10 1 1 \n",
|
245 |
+
"1 1 224 224 3 10 1 1 \n",
|
246 |
+
"2 1 224 224 3 10 1 1 \n",
|
247 |
+
"3 1 224 224 3 10 2 1 \n",
|
248 |
+
"4 1 224 224 3 10 2 1 \n",
|
249 |
+
"\n",
|
250 |
+
" learn_rate cuda_version batch_time ... max_gpu_util avg_gpu_util \\\n",
|
251 |
+
"0 0.0100 12.2 22.07 ... 13.0 0.51 \n",
|
252 |
+
"1 0.0010 12.2 18.44 ... 100.0 2.92 \n",
|
253 |
+
"2 0.0001 12.2 18.78 ... 26.0 0.86 \n",
|
254 |
+
"3 0.0100 12.2 9.38 ... 28.0 1.78 \n",
|
255 |
+
"4 0.0010 12.2 9.30 ... 100.0 3.41 \n",
|
256 |
+
"\n",
|
257 |
+
" max_gpu_temp avg_gpu_temp unit_name_encoded optimizer_sgd \\\n",
|
258 |
+
"0 25.0 25.00 7 False \n",
|
259 |
+
"1 26.0 25.84 7 False \n",
|
260 |
+
"2 26.0 26.00 7 False \n",
|
261 |
+
"3 27.0 26.04 7 False \n",
|
262 |
+
"4 27.0 26.55 7 False \n",
|
263 |
+
"\n",
|
264 |
+
" gpu_name_Tesla P100-PCIE-16GB gpu_name_Tesla V100S-PCIE-32GB \\\n",
|
265 |
+
"0 True False \n",
|
266 |
+
"1 True False \n",
|
267 |
+
"2 True False \n",
|
268 |
+
"3 True False \n",
|
269 |
+
"4 True False \n",
|
270 |
+
"\n",
|
271 |
+
" gpu_arch_Tesla gpu_memory_type_hbm2e \n",
|
272 |
+
"0 True False \n",
|
273 |
+
"1 True False \n",
|
274 |
+
"2 True False \n",
|
275 |
+
"3 True False \n",
|
276 |
+
"4 True False \n",
|
277 |
+
"\n",
|
278 |
+
"[5 rows x 30 columns]"
|
279 |
+
],
|
280 |
+
"text/html": [
|
281 |
+
"\n",
|
282 |
+
" <div id=\"df-c1d454f0-1110-4414-b0fa-c9f3510b4a83\" class=\"colab-df-container\">\n",
|
283 |
+
" <div>\n",
|
284 |
+
"<style scoped>\n",
|
285 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
286 |
+
" vertical-align: middle;\n",
|
287 |
+
" }\n",
|
288 |
+
"\n",
|
289 |
+
" .dataframe tbody tr th {\n",
|
290 |
+
" vertical-align: top;\n",
|
291 |
+
" }\n",
|
292 |
+
"\n",
|
293 |
+
" .dataframe thead th {\n",
|
294 |
+
" text-align: right;\n",
|
295 |
+
" }\n",
|
296 |
+
"</style>\n",
|
297 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
298 |
+
" <thead>\n",
|
299 |
+
" <tr style=\"text-align: right;\">\n",
|
300 |
+
" <th></th>\n",
|
301 |
+
" <th>samples</th>\n",
|
302 |
+
" <th>input_dim_w</th>\n",
|
303 |
+
" <th>input_dim_h</th>\n",
|
304 |
+
" <th>input_dim_c</th>\n",
|
305 |
+
" <th>output_dim</th>\n",
|
306 |
+
" <th>epochs</th>\n",
|
307 |
+
" <th>batch</th>\n",
|
308 |
+
" <th>learn_rate</th>\n",
|
309 |
+
" <th>cuda_version</th>\n",
|
310 |
+
" <th>batch_time</th>\n",
|
311 |
+
" <th>...</th>\n",
|
312 |
+
" <th>max_gpu_util</th>\n",
|
313 |
+
" <th>avg_gpu_util</th>\n",
|
314 |
+
" <th>max_gpu_temp</th>\n",
|
315 |
+
" <th>avg_gpu_temp</th>\n",
|
316 |
+
" <th>unit_name_encoded</th>\n",
|
317 |
+
" <th>optimizer_sgd</th>\n",
|
318 |
+
" <th>gpu_name_Tesla P100-PCIE-16GB</th>\n",
|
319 |
+
" <th>gpu_name_Tesla V100S-PCIE-32GB</th>\n",
|
320 |
+
" <th>gpu_arch_Tesla</th>\n",
|
321 |
+
" <th>gpu_memory_type_hbm2e</th>\n",
|
322 |
+
" </tr>\n",
|
323 |
+
" </thead>\n",
|
324 |
+
" <tbody>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>0</th>\n",
|
327 |
+
" <td>1</td>\n",
|
328 |
+
" <td>224</td>\n",
|
329 |
+
" <td>224</td>\n",
|
330 |
+
" <td>3</td>\n",
|
331 |
+
" <td>10</td>\n",
|
332 |
+
" <td>1</td>\n",
|
333 |
+
" <td>1</td>\n",
|
334 |
+
" <td>0.0100</td>\n",
|
335 |
+
" <td>12.2</td>\n",
|
336 |
+
" <td>22.07</td>\n",
|
337 |
+
" <td>...</td>\n",
|
338 |
+
" <td>13.0</td>\n",
|
339 |
+
" <td>0.51</td>\n",
|
340 |
+
" <td>25.0</td>\n",
|
341 |
+
" <td>25.00</td>\n",
|
342 |
+
" <td>7</td>\n",
|
343 |
+
" <td>False</td>\n",
|
344 |
+
" <td>True</td>\n",
|
345 |
+
" <td>False</td>\n",
|
346 |
+
" <td>True</td>\n",
|
347 |
+
" <td>False</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" <tr>\n",
|
350 |
+
" <th>1</th>\n",
|
351 |
+
" <td>1</td>\n",
|
352 |
+
" <td>224</td>\n",
|
353 |
+
" <td>224</td>\n",
|
354 |
+
" <td>3</td>\n",
|
355 |
+
" <td>10</td>\n",
|
356 |
+
" <td>1</td>\n",
|
357 |
+
" <td>1</td>\n",
|
358 |
+
" <td>0.0010</td>\n",
|
359 |
+
" <td>12.2</td>\n",
|
360 |
+
" <td>18.44</td>\n",
|
361 |
+
" <td>...</td>\n",
|
362 |
+
" <td>100.0</td>\n",
|
363 |
+
" <td>2.92</td>\n",
|
364 |
+
" <td>26.0</td>\n",
|
365 |
+
" <td>25.84</td>\n",
|
366 |
+
" <td>7</td>\n",
|
367 |
+
" <td>False</td>\n",
|
368 |
+
" <td>True</td>\n",
|
369 |
+
" <td>False</td>\n",
|
370 |
+
" <td>True</td>\n",
|
371 |
+
" <td>False</td>\n",
|
372 |
+
" </tr>\n",
|
373 |
+
" <tr>\n",
|
374 |
+
" <th>2</th>\n",
|
375 |
+
" <td>1</td>\n",
|
376 |
+
" <td>224</td>\n",
|
377 |
+
" <td>224</td>\n",
|
378 |
+
" <td>3</td>\n",
|
379 |
+
" <td>10</td>\n",
|
380 |
+
" <td>1</td>\n",
|
381 |
+
" <td>1</td>\n",
|
382 |
+
" <td>0.0001</td>\n",
|
383 |
+
" <td>12.2</td>\n",
|
384 |
+
" <td>18.78</td>\n",
|
385 |
+
" <td>...</td>\n",
|
386 |
+
" <td>26.0</td>\n",
|
387 |
+
" <td>0.86</td>\n",
|
388 |
+
" <td>26.0</td>\n",
|
389 |
+
" <td>26.00</td>\n",
|
390 |
+
" <td>7</td>\n",
|
391 |
+
" <td>False</td>\n",
|
392 |
+
" <td>True</td>\n",
|
393 |
+
" <td>False</td>\n",
|
394 |
+
" <td>True</td>\n",
|
395 |
+
" <td>False</td>\n",
|
396 |
+
" </tr>\n",
|
397 |
+
" <tr>\n",
|
398 |
+
" <th>3</th>\n",
|
399 |
+
" <td>1</td>\n",
|
400 |
+
" <td>224</td>\n",
|
401 |
+
" <td>224</td>\n",
|
402 |
+
" <td>3</td>\n",
|
403 |
+
" <td>10</td>\n",
|
404 |
+
" <td>2</td>\n",
|
405 |
+
" <td>1</td>\n",
|
406 |
+
" <td>0.0100</td>\n",
|
407 |
+
" <td>12.2</td>\n",
|
408 |
+
" <td>9.38</td>\n",
|
409 |
+
" <td>...</td>\n",
|
410 |
+
" <td>28.0</td>\n",
|
411 |
+
" <td>1.78</td>\n",
|
412 |
+
" <td>27.0</td>\n",
|
413 |
+
" <td>26.04</td>\n",
|
414 |
+
" <td>7</td>\n",
|
415 |
+
" <td>False</td>\n",
|
416 |
+
" <td>True</td>\n",
|
417 |
+
" <td>False</td>\n",
|
418 |
+
" <td>True</td>\n",
|
419 |
+
" <td>False</td>\n",
|
420 |
+
" </tr>\n",
|
421 |
+
" <tr>\n",
|
422 |
+
" <th>4</th>\n",
|
423 |
+
" <td>1</td>\n",
|
424 |
+
" <td>224</td>\n",
|
425 |
+
" <td>224</td>\n",
|
426 |
+
" <td>3</td>\n",
|
427 |
+
" <td>10</td>\n",
|
428 |
+
" <td>2</td>\n",
|
429 |
+
" <td>1</td>\n",
|
430 |
+
" <td>0.0010</td>\n",
|
431 |
+
" <td>12.2</td>\n",
|
432 |
+
" <td>9.30</td>\n",
|
433 |
+
" <td>...</td>\n",
|
434 |
+
" <td>100.0</td>\n",
|
435 |
+
" <td>3.41</td>\n",
|
436 |
+
" <td>27.0</td>\n",
|
437 |
+
" <td>26.55</td>\n",
|
438 |
+
" <td>7</td>\n",
|
439 |
+
" <td>False</td>\n",
|
440 |
+
" <td>True</td>\n",
|
441 |
+
" <td>False</td>\n",
|
442 |
+
" <td>True</td>\n",
|
443 |
+
" <td>False</td>\n",
|
444 |
+
" </tr>\n",
|
445 |
+
" </tbody>\n",
|
446 |
+
"</table>\n",
|
447 |
+
"<p>5 rows × 30 columns</p>\n",
|
448 |
+
"</div>\n",
|
449 |
+
" <div class=\"colab-df-buttons\">\n",
|
450 |
+
"\n",
|
451 |
+
" <div class=\"colab-df-container\">\n",
|
452 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-c1d454f0-1110-4414-b0fa-c9f3510b4a83')\"\n",
|
453 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
454 |
+
" style=\"display:none;\">\n",
|
455 |
+
"\n",
|
456 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
457 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
458 |
+
" </svg>\n",
|
459 |
+
" </button>\n",
|
460 |
+
"\n",
|
461 |
+
" <style>\n",
|
462 |
+
" .colab-df-container {\n",
|
463 |
+
" display:flex;\n",
|
464 |
+
" gap: 12px;\n",
|
465 |
+
" }\n",
|
466 |
+
"\n",
|
467 |
+
" .colab-df-convert {\n",
|
468 |
+
" background-color: #E8F0FE;\n",
|
469 |
+
" border: none;\n",
|
470 |
+
" border-radius: 50%;\n",
|
471 |
+
" cursor: pointer;\n",
|
472 |
+
" display: none;\n",
|
473 |
+
" fill: #1967D2;\n",
|
474 |
+
" height: 32px;\n",
|
475 |
+
" padding: 0 0 0 0;\n",
|
476 |
+
" width: 32px;\n",
|
477 |
+
" }\n",
|
478 |
+
"\n",
|
479 |
+
" .colab-df-convert:hover {\n",
|
480 |
+
" background-color: #E2EBFA;\n",
|
481 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
482 |
+
" fill: #174EA6;\n",
|
483 |
+
" }\n",
|
484 |
+
"\n",
|
485 |
+
" .colab-df-buttons div {\n",
|
486 |
+
" margin-bottom: 4px;\n",
|
487 |
+
" }\n",
|
488 |
+
"\n",
|
489 |
+
" [theme=dark] .colab-df-convert {\n",
|
490 |
+
" background-color: #3B4455;\n",
|
491 |
+
" fill: #D2E3FC;\n",
|
492 |
+
" }\n",
|
493 |
+
"\n",
|
494 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
495 |
+
" background-color: #434B5C;\n",
|
496 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
497 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
498 |
+
" fill: #FFFFFF;\n",
|
499 |
+
" }\n",
|
500 |
+
" </style>\n",
|
501 |
+
"\n",
|
502 |
+
" <script>\n",
|
503 |
+
" const buttonEl =\n",
|
504 |
+
" document.querySelector('#df-c1d454f0-1110-4414-b0fa-c9f3510b4a83 button.colab-df-convert');\n",
|
505 |
+
" buttonEl.style.display =\n",
|
506 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
507 |
+
"\n",
|
508 |
+
" async function convertToInteractive(key) {\n",
|
509 |
+
" const element = document.querySelector('#df-c1d454f0-1110-4414-b0fa-c9f3510b4a83');\n",
|
510 |
+
" const dataTable =\n",
|
511 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
512 |
+
" [key], {});\n",
|
513 |
+
" if (!dataTable) return;\n",
|
514 |
+
"\n",
|
515 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
516 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
517 |
+
" + ' to learn more about interactive tables.';\n",
|
518 |
+
" element.innerHTML = '';\n",
|
519 |
+
" dataTable['output_type'] = 'display_data';\n",
|
520 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
521 |
+
" const docLink = document.createElement('div');\n",
|
522 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
523 |
+
" element.appendChild(docLink);\n",
|
524 |
+
" }\n",
|
525 |
+
" </script>\n",
|
526 |
+
" </div>\n",
|
527 |
+
"\n",
|
528 |
+
"\n",
|
529 |
+
"<div id=\"df-7fca458e-936c-4a6a-a0af-2f6ef67c3e8e\">\n",
|
530 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-7fca458e-936c-4a6a-a0af-2f6ef67c3e8e')\"\n",
|
531 |
+
" title=\"Suggest charts\"\n",
|
532 |
+
" style=\"display:none;\">\n",
|
533 |
+
"\n",
|
534 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
535 |
+
" width=\"24px\">\n",
|
536 |
+
" <g>\n",
|
537 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
538 |
+
" </g>\n",
|
539 |
+
"</svg>\n",
|
540 |
+
" </button>\n",
|
541 |
+
"\n",
|
542 |
+
"<style>\n",
|
543 |
+
" .colab-df-quickchart {\n",
|
544 |
+
" --bg-color: #E8F0FE;\n",
|
545 |
+
" --fill-color: #1967D2;\n",
|
546 |
+
" --hover-bg-color: #E2EBFA;\n",
|
547 |
+
" --hover-fill-color: #174EA6;\n",
|
548 |
+
" --disabled-fill-color: #AAA;\n",
|
549 |
+
" --disabled-bg-color: #DDD;\n",
|
550 |
+
" }\n",
|
551 |
+
"\n",
|
552 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
553 |
+
" --bg-color: #3B4455;\n",
|
554 |
+
" --fill-color: #D2E3FC;\n",
|
555 |
+
" --hover-bg-color: #434B5C;\n",
|
556 |
+
" --hover-fill-color: #FFFFFF;\n",
|
557 |
+
" --disabled-bg-color: #3B4455;\n",
|
558 |
+
" --disabled-fill-color: #666;\n",
|
559 |
+
" }\n",
|
560 |
+
"\n",
|
561 |
+
" .colab-df-quickchart {\n",
|
562 |
+
" background-color: var(--bg-color);\n",
|
563 |
+
" border: none;\n",
|
564 |
+
" border-radius: 50%;\n",
|
565 |
+
" cursor: pointer;\n",
|
566 |
+
" display: none;\n",
|
567 |
+
" fill: var(--fill-color);\n",
|
568 |
+
" height: 32px;\n",
|
569 |
+
" padding: 0;\n",
|
570 |
+
" width: 32px;\n",
|
571 |
+
" }\n",
|
572 |
+
"\n",
|
573 |
+
" .colab-df-quickchart:hover {\n",
|
574 |
+
" background-color: var(--hover-bg-color);\n",
|
575 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
576 |
+
" fill: var(--button-hover-fill-color);\n",
|
577 |
+
" }\n",
|
578 |
+
"\n",
|
579 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
580 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
581 |
+
" background-color: var(--disabled-bg-color);\n",
|
582 |
+
" fill: var(--disabled-fill-color);\n",
|
583 |
+
" box-shadow: none;\n",
|
584 |
+
" }\n",
|
585 |
+
"\n",
|
586 |
+
" .colab-df-spinner {\n",
|
587 |
+
" border: 2px solid var(--fill-color);\n",
|
588 |
+
" border-color: transparent;\n",
|
589 |
+
" border-bottom-color: var(--fill-color);\n",
|
590 |
+
" animation:\n",
|
591 |
+
" spin 1s steps(1) infinite;\n",
|
592 |
+
" }\n",
|
593 |
+
"\n",
|
594 |
+
" @keyframes spin {\n",
|
595 |
+
" 0% {\n",
|
596 |
+
" border-color: transparent;\n",
|
597 |
+
" border-bottom-color: var(--fill-color);\n",
|
598 |
+
" border-left-color: var(--fill-color);\n",
|
599 |
+
" }\n",
|
600 |
+
" 20% {\n",
|
601 |
+
" border-color: transparent;\n",
|
602 |
+
" border-left-color: var(--fill-color);\n",
|
603 |
+
" border-top-color: var(--fill-color);\n",
|
604 |
+
" }\n",
|
605 |
+
" 30% {\n",
|
606 |
+
" border-color: transparent;\n",
|
607 |
+
" border-left-color: var(--fill-color);\n",
|
608 |
+
" border-top-color: var(--fill-color);\n",
|
609 |
+
" border-right-color: var(--fill-color);\n",
|
610 |
+
" }\n",
|
611 |
+
" 40% {\n",
|
612 |
+
" border-color: transparent;\n",
|
613 |
+
" border-right-color: var(--fill-color);\n",
|
614 |
+
" border-top-color: var(--fill-color);\n",
|
615 |
+
" }\n",
|
616 |
+
" 60% {\n",
|
617 |
+
" border-color: transparent;\n",
|
618 |
+
" border-right-color: var(--fill-color);\n",
|
619 |
+
" }\n",
|
620 |
+
" 80% {\n",
|
621 |
+
" border-color: transparent;\n",
|
622 |
+
" border-right-color: var(--fill-color);\n",
|
623 |
+
" border-bottom-color: var(--fill-color);\n",
|
624 |
+
" }\n",
|
625 |
+
" 90% {\n",
|
626 |
+
" border-color: transparent;\n",
|
627 |
+
" border-bottom-color: var(--fill-color);\n",
|
628 |
+
" }\n",
|
629 |
+
" }\n",
|
630 |
+
"</style>\n",
|
631 |
+
"\n",
|
632 |
+
" <script>\n",
|
633 |
+
" async function quickchart(key) {\n",
|
634 |
+
" const quickchartButtonEl =\n",
|
635 |
+
" document.querySelector('#' + key + ' button');\n",
|
636 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
637 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
638 |
+
" try {\n",
|
639 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
640 |
+
" 'suggestCharts', [key], {});\n",
|
641 |
+
" } catch (error) {\n",
|
642 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
643 |
+
" }\n",
|
644 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
645 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
646 |
+
" }\n",
|
647 |
+
" (() => {\n",
|
648 |
+
" let quickchartButtonEl =\n",
|
649 |
+
" document.querySelector('#df-7fca458e-936c-4a6a-a0af-2f6ef67c3e8e button');\n",
|
650 |
+
" quickchartButtonEl.style.display =\n",
|
651 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
652 |
+
" })();\n",
|
653 |
+
" </script>\n",
|
654 |
+
"</div>\n",
|
655 |
+
"\n",
|
656 |
+
" </div>\n",
|
657 |
+
" </div>\n"
|
658 |
+
],
|
659 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
660 |
+
"type": "dataframe",
|
661 |
+
"variable_name": "df"
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"metadata": {},
|
665 |
+
"execution_count": 10
|
666 |
+
}
|
667 |
+
],
|
668 |
+
"source": [
|
669 |
+
"df.head()"
|
670 |
+
]
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"cell_type": "markdown",
|
674 |
+
"metadata": {
|
675 |
+
"id": "83f8b988"
|
676 |
+
},
|
677 |
+
"source": [
|
678 |
+
"## 5️⃣ Train-Test Split\n",
|
679 |
+
"Split the dataset into training and testing sets."
|
680 |
+
]
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"cell_type": "code",
|
684 |
+
"execution_count": 11,
|
685 |
+
"metadata": {
|
686 |
+
"id": "m8xtdVgq_ZBt"
|
687 |
+
},
|
688 |
+
"outputs": [],
|
689 |
+
"source": [
|
690 |
+
"# Example: Split based on a numerical condition\n",
|
691 |
+
"train_data = df[df['unit_name_encoded'] >= 6]\n",
|
692 |
+
"test_data = df[df['unit_name_encoded'] < 6]\n",
|
693 |
+
"\n",
|
694 |
+
"train_data = train_data.sample(frac=0.2, random_state=42)\n",
|
695 |
+
"\n",
|
696 |
+
"# Separate features and target\n",
|
697 |
+
"\n",
|
698 |
+
"X_train = train_data.drop(columns=['max_memory_util',\t'avg_memory_util',\t'max_gpu_util',\t'avg_gpu_util',\t'max_gpu_temp',\t'avg_gpu_temp', 'epoch_time',\t'fit_time'])\n",
|
699 |
+
"y_train = train_data[['epoch_time', 'fit_time', 'max_memory_util', 'max_gpu_util']]\n",
|
700 |
+
"X_test = test_data.drop(columns=['max_memory_util',\t'avg_memory_util',\t'max_gpu_util',\t'avg_gpu_util',\t'max_gpu_temp',\t'avg_gpu_temp', 'epoch_time',\t'fit_time']) # Replace 'fit_time_in_TF' with your target column\n",
|
701 |
+
"y_test = test_data[['epoch_time', 'fit_time', 'max_memory_util', 'max_gpu_util']]"
|
702 |
+
]
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"execution_count": null,
|
707 |
+
"metadata": {
|
708 |
+
"colab": {
|
709 |
+
"base_uri": "https://localhost:8080/"
|
710 |
+
},
|
711 |
+
"id": "0B124aBf-i7l",
|
712 |
+
"outputId": "5de51f6b-fbc7-4bbe-8849-89b9667f3218"
|
713 |
+
},
|
714 |
+
"outputs": [
|
715 |
+
{
|
716 |
+
"data": {
|
717 |
+
"text/plain": [
|
718 |
+
"(1553, 27)"
|
719 |
+
]
|
720 |
+
},
|
721 |
+
"execution_count": 10,
|
722 |
+
"metadata": {},
|
723 |
+
"output_type": "execute_result"
|
724 |
+
}
|
725 |
+
],
|
726 |
+
"source": [
|
727 |
+
"train_data.shape"
|
728 |
+
]
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"cell_type": "markdown",
|
732 |
+
"metadata": {
|
733 |
+
"id": "3250bbd6"
|
734 |
+
},
|
735 |
+
"source": [
|
736 |
+
"## 6️⃣ Model Building with XGBoost\n",
|
737 |
+
"Define, train, and predict using the XGBoost Regressor."
|
738 |
+
]
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"cell_type": "code",
|
742 |
+
"execution_count": 12,
|
743 |
+
"metadata": {
|
744 |
+
"colab": {
|
745 |
+
"base_uri": "https://localhost:8080/",
|
746 |
+
"height": 253
|
747 |
+
},
|
748 |
+
"id": "yc6bxIBq_ZuP",
|
749 |
+
"outputId": "83fb3bd1-d5fa-48aa-dc23-5248667f2974"
|
750 |
+
},
|
751 |
+
"outputs": [
|
752 |
+
{
|
753 |
+
"output_type": "execute_result",
|
754 |
+
"data": {
|
755 |
+
"text/plain": [
|
756 |
+
"XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
757 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
758 |
+
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
|
759 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
760 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
761 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
762 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
763 |
+
" max_delta_step=None, max_depth=6, max_leaves=None,\n",
|
764 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
765 |
+
" multi_strategy=None, n_estimators=100, n_jobs=None,\n",
|
766 |
+
" num_parallel_tree=None, random_state=42, ...)"
|
767 |
+
],
|
768 |
+
"text/html": [
|
769 |
+
"<style>#sk-container-id-1 {\n",
|
770 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
771 |
+
" --sklearn-color-text: black;\n",
|
772 |
+
" --sklearn-color-line: gray;\n",
|
773 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
774 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
775 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
776 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
777 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
778 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
779 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
780 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
781 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
782 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
783 |
+
"\n",
|
784 |
+
" /* Specific color for light theme */\n",
|
785 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
786 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
787 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
788 |
+
" --sklearn-color-icon: #696969;\n",
|
789 |
+
"\n",
|
790 |
+
" @media (prefers-color-scheme: dark) {\n",
|
791 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
792 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
793 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
794 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
795 |
+
" --sklearn-color-icon: #878787;\n",
|
796 |
+
" }\n",
|
797 |
+
"}\n",
|
798 |
+
"\n",
|
799 |
+
"#sk-container-id-1 {\n",
|
800 |
+
" color: var(--sklearn-color-text);\n",
|
801 |
+
"}\n",
|
802 |
+
"\n",
|
803 |
+
"#sk-container-id-1 pre {\n",
|
804 |
+
" padding: 0;\n",
|
805 |
+
"}\n",
|
806 |
+
"\n",
|
807 |
+
"#sk-container-id-1 input.sk-hidden--visually {\n",
|
808 |
+
" border: 0;\n",
|
809 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
810 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
811 |
+
" height: 1px;\n",
|
812 |
+
" margin: -1px;\n",
|
813 |
+
" overflow: hidden;\n",
|
814 |
+
" padding: 0;\n",
|
815 |
+
" position: absolute;\n",
|
816 |
+
" width: 1px;\n",
|
817 |
+
"}\n",
|
818 |
+
"\n",
|
819 |
+
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
|
820 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
821 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
822 |
+
" box-sizing: border-box;\n",
|
823 |
+
" padding-bottom: 0.4em;\n",
|
824 |
+
" background-color: var(--sklearn-color-background);\n",
|
825 |
+
"}\n",
|
826 |
+
"\n",
|
827 |
+
"#sk-container-id-1 div.sk-container {\n",
|
828 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
829 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
830 |
+
" so we also need the `!important` here to be able to override the\n",
|
831 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
832 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
833 |
+
" display: inline-block !important;\n",
|
834 |
+
" position: relative;\n",
|
835 |
+
"}\n",
|
836 |
+
"\n",
|
837 |
+
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
|
838 |
+
" display: none;\n",
|
839 |
+
"}\n",
|
840 |
+
"\n",
|
841 |
+
"div.sk-parallel-item,\n",
|
842 |
+
"div.sk-serial,\n",
|
843 |
+
"div.sk-item {\n",
|
844 |
+
" /* draw centered vertical line to link estimators */\n",
|
845 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
846 |
+
" background-size: 2px 100%;\n",
|
847 |
+
" background-repeat: no-repeat;\n",
|
848 |
+
" background-position: center center;\n",
|
849 |
+
"}\n",
|
850 |
+
"\n",
|
851 |
+
"/* Parallel-specific style estimator block */\n",
|
852 |
+
"\n",
|
853 |
+
"#sk-container-id-1 div.sk-parallel-item::after {\n",
|
854 |
+
" content: \"\";\n",
|
855 |
+
" width: 100%;\n",
|
856 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
857 |
+
" flex-grow: 1;\n",
|
858 |
+
"}\n",
|
859 |
+
"\n",
|
860 |
+
"#sk-container-id-1 div.sk-parallel {\n",
|
861 |
+
" display: flex;\n",
|
862 |
+
" align-items: stretch;\n",
|
863 |
+
" justify-content: center;\n",
|
864 |
+
" background-color: var(--sklearn-color-background);\n",
|
865 |
+
" position: relative;\n",
|
866 |
+
"}\n",
|
867 |
+
"\n",
|
868 |
+
"#sk-container-id-1 div.sk-parallel-item {\n",
|
869 |
+
" display: flex;\n",
|
870 |
+
" flex-direction: column;\n",
|
871 |
+
"}\n",
|
872 |
+
"\n",
|
873 |
+
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
|
874 |
+
" align-self: flex-end;\n",
|
875 |
+
" width: 50%;\n",
|
876 |
+
"}\n",
|
877 |
+
"\n",
|
878 |
+
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
|
879 |
+
" align-self: flex-start;\n",
|
880 |
+
" width: 50%;\n",
|
881 |
+
"}\n",
|
882 |
+
"\n",
|
883 |
+
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
|
884 |
+
" width: 0;\n",
|
885 |
+
"}\n",
|
886 |
+
"\n",
|
887 |
+
"/* Serial-specific style estimator block */\n",
|
888 |
+
"\n",
|
889 |
+
"#sk-container-id-1 div.sk-serial {\n",
|
890 |
+
" display: flex;\n",
|
891 |
+
" flex-direction: column;\n",
|
892 |
+
" align-items: center;\n",
|
893 |
+
" background-color: var(--sklearn-color-background);\n",
|
894 |
+
" padding-right: 1em;\n",
|
895 |
+
" padding-left: 1em;\n",
|
896 |
+
"}\n",
|
897 |
+
"\n",
|
898 |
+
"\n",
|
899 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
900 |
+
"clickable and can be expanded/collapsed.\n",
|
901 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
902 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
903 |
+
"*/\n",
|
904 |
+
"\n",
|
905 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
906 |
+
"\n",
|
907 |
+
"#sk-container-id-1 div.sk-toggleable {\n",
|
908 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
909 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
910 |
+
" background-color: var(--sklearn-color-background);\n",
|
911 |
+
"}\n",
|
912 |
+
"\n",
|
913 |
+
"/* Toggleable label */\n",
|
914 |
+
"#sk-container-id-1 label.sk-toggleable__label {\n",
|
915 |
+
" cursor: pointer;\n",
|
916 |
+
" display: block;\n",
|
917 |
+
" width: 100%;\n",
|
918 |
+
" margin-bottom: 0;\n",
|
919 |
+
" padding: 0.5em;\n",
|
920 |
+
" box-sizing: border-box;\n",
|
921 |
+
" text-align: center;\n",
|
922 |
+
"}\n",
|
923 |
+
"\n",
|
924 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
|
925 |
+
" /* Arrow on the left of the label */\n",
|
926 |
+
" content: \"▸\";\n",
|
927 |
+
" float: left;\n",
|
928 |
+
" margin-right: 0.25em;\n",
|
929 |
+
" color: var(--sklearn-color-icon);\n",
|
930 |
+
"}\n",
|
931 |
+
"\n",
|
932 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
|
933 |
+
" color: var(--sklearn-color-text);\n",
|
934 |
+
"}\n",
|
935 |
+
"\n",
|
936 |
+
"/* Toggleable content - dropdown */\n",
|
937 |
+
"\n",
|
938 |
+
"#sk-container-id-1 div.sk-toggleable__content {\n",
|
939 |
+
" max-height: 0;\n",
|
940 |
+
" max-width: 0;\n",
|
941 |
+
" overflow: hidden;\n",
|
942 |
+
" text-align: left;\n",
|
943 |
+
" /* unfitted */\n",
|
944 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
945 |
+
"}\n",
|
946 |
+
"\n",
|
947 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
|
948 |
+
" /* fitted */\n",
|
949 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
950 |
+
"}\n",
|
951 |
+
"\n",
|
952 |
+
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
|
953 |
+
" margin: 0.2em;\n",
|
954 |
+
" border-radius: 0.25em;\n",
|
955 |
+
" color: var(--sklearn-color-text);\n",
|
956 |
+
" /* unfitted */\n",
|
957 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
958 |
+
"}\n",
|
959 |
+
"\n",
|
960 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
|
961 |
+
" /* unfitted */\n",
|
962 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
963 |
+
"}\n",
|
964 |
+
"\n",
|
965 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
966 |
+
" /* Expand drop-down */\n",
|
967 |
+
" max-height: 200px;\n",
|
968 |
+
" max-width: 100%;\n",
|
969 |
+
" overflow: auto;\n",
|
970 |
+
"}\n",
|
971 |
+
"\n",
|
972 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
973 |
+
" content: \"▾\";\n",
|
974 |
+
"}\n",
|
975 |
+
"\n",
|
976 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
977 |
+
"\n",
|
978 |
+
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
979 |
+
" color: var(--sklearn-color-text);\n",
|
980 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
981 |
+
"}\n",
|
982 |
+
"\n",
|
983 |
+
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
984 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
985 |
+
"}\n",
|
986 |
+
"\n",
|
987 |
+
"/* Estimator-specific style */\n",
|
988 |
+
"\n",
|
989 |
+
"/* Colorize estimator box */\n",
|
990 |
+
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
991 |
+
" /* unfitted */\n",
|
992 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
993 |
+
"}\n",
|
994 |
+
"\n",
|
995 |
+
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
996 |
+
" /* fitted */\n",
|
997 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
998 |
+
"}\n",
|
999 |
+
"\n",
|
1000 |
+
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
|
1001 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
1002 |
+
" /* The background is the default theme color */\n",
|
1003 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
1004 |
+
"}\n",
|
1005 |
+
"\n",
|
1006 |
+
"/* On hover, darken the color of the background */\n",
|
1007 |
+
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
|
1008 |
+
" color: var(--sklearn-color-text);\n",
|
1009 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1010 |
+
"}\n",
|
1011 |
+
"\n",
|
1012 |
+
"/* Label box, darken color on hover, fitted */\n",
|
1013 |
+
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
1014 |
+
" color: var(--sklearn-color-text);\n",
|
1015 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1016 |
+
"}\n",
|
1017 |
+
"\n",
|
1018 |
+
"/* Estimator label */\n",
|
1019 |
+
"\n",
|
1020 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
1021 |
+
" font-family: monospace;\n",
|
1022 |
+
" font-weight: bold;\n",
|
1023 |
+
" display: inline-block;\n",
|
1024 |
+
" line-height: 1.2em;\n",
|
1025 |
+
"}\n",
|
1026 |
+
"\n",
|
1027 |
+
"#sk-container-id-1 div.sk-label-container {\n",
|
1028 |
+
" text-align: center;\n",
|
1029 |
+
"}\n",
|
1030 |
+
"\n",
|
1031 |
+
"/* Estimator-specific */\n",
|
1032 |
+
"#sk-container-id-1 div.sk-estimator {\n",
|
1033 |
+
" font-family: monospace;\n",
|
1034 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
1035 |
+
" border-radius: 0.25em;\n",
|
1036 |
+
" box-sizing: border-box;\n",
|
1037 |
+
" margin-bottom: 0.5em;\n",
|
1038 |
+
" /* unfitted */\n",
|
1039 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1040 |
+
"}\n",
|
1041 |
+
"\n",
|
1042 |
+
"#sk-container-id-1 div.sk-estimator.fitted {\n",
|
1043 |
+
" /* fitted */\n",
|
1044 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1045 |
+
"}\n",
|
1046 |
+
"\n",
|
1047 |
+
"/* on hover */\n",
|
1048 |
+
"#sk-container-id-1 div.sk-estimator:hover {\n",
|
1049 |
+
" /* unfitted */\n",
|
1050 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1051 |
+
"}\n",
|
1052 |
+
"\n",
|
1053 |
+
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
|
1054 |
+
" /* fitted */\n",
|
1055 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1056 |
+
"}\n",
|
1057 |
+
"\n",
|
1058 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
1059 |
+
"\n",
|
1060 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
1061 |
+
"\n",
|
1062 |
+
".sk-estimator-doc-link,\n",
|
1063 |
+
"a:link.sk-estimator-doc-link,\n",
|
1064 |
+
"a:visited.sk-estimator-doc-link {\n",
|
1065 |
+
" float: right;\n",
|
1066 |
+
" font-size: smaller;\n",
|
1067 |
+
" line-height: 1em;\n",
|
1068 |
+
" font-family: monospace;\n",
|
1069 |
+
" background-color: var(--sklearn-color-background);\n",
|
1070 |
+
" border-radius: 1em;\n",
|
1071 |
+
" height: 1em;\n",
|
1072 |
+
" width: 1em;\n",
|
1073 |
+
" text-decoration: none !important;\n",
|
1074 |
+
" margin-left: 1ex;\n",
|
1075 |
+
" /* unfitted */\n",
|
1076 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1077 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1078 |
+
"}\n",
|
1079 |
+
"\n",
|
1080 |
+
".sk-estimator-doc-link.fitted,\n",
|
1081 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
1082 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
1083 |
+
" /* fitted */\n",
|
1084 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1085 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1086 |
+
"}\n",
|
1087 |
+
"\n",
|
1088 |
+
"/* On hover */\n",
|
1089 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
1090 |
+
".sk-estimator-doc-link:hover,\n",
|
1091 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
1092 |
+
".sk-estimator-doc-link:hover {\n",
|
1093 |
+
" /* unfitted */\n",
|
1094 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1095 |
+
" color: var(--sklearn-color-background);\n",
|
1096 |
+
" text-decoration: none;\n",
|
1097 |
+
"}\n",
|
1098 |
+
"\n",
|
1099 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1100 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
1101 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1102 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
1103 |
+
" /* fitted */\n",
|
1104 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1105 |
+
" color: var(--sklearn-color-background);\n",
|
1106 |
+
" text-decoration: none;\n",
|
1107 |
+
"}\n",
|
1108 |
+
"\n",
|
1109 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
1110 |
+
".sk-estimator-doc-link span {\n",
|
1111 |
+
" display: none;\n",
|
1112 |
+
" z-index: 9999;\n",
|
1113 |
+
" position: relative;\n",
|
1114 |
+
" font-weight: normal;\n",
|
1115 |
+
" right: .2ex;\n",
|
1116 |
+
" padding: .5ex;\n",
|
1117 |
+
" margin: .5ex;\n",
|
1118 |
+
" width: min-content;\n",
|
1119 |
+
" min-width: 20ex;\n",
|
1120 |
+
" max-width: 50ex;\n",
|
1121 |
+
" color: var(--sklearn-color-text);\n",
|
1122 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
1123 |
+
" /* unfitted */\n",
|
1124 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
1125 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
1126 |
+
"}\n",
|
1127 |
+
"\n",
|
1128 |
+
".sk-estimator-doc-link.fitted span {\n",
|
1129 |
+
" /* fitted */\n",
|
1130 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
1131 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
1132 |
+
"}\n",
|
1133 |
+
"\n",
|
1134 |
+
".sk-estimator-doc-link:hover span {\n",
|
1135 |
+
" display: block;\n",
|
1136 |
+
"}\n",
|
1137 |
+
"\n",
|
1138 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
1139 |
+
"\n",
|
1140 |
+
"#sk-container-id-1 a.estimator_doc_link {\n",
|
1141 |
+
" float: right;\n",
|
1142 |
+
" font-size: 1rem;\n",
|
1143 |
+
" line-height: 1em;\n",
|
1144 |
+
" font-family: monospace;\n",
|
1145 |
+
" background-color: var(--sklearn-color-background);\n",
|
1146 |
+
" border-radius: 1rem;\n",
|
1147 |
+
" height: 1rem;\n",
|
1148 |
+
" width: 1rem;\n",
|
1149 |
+
" text-decoration: none;\n",
|
1150 |
+
" /* unfitted */\n",
|
1151 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1152 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1153 |
+
"}\n",
|
1154 |
+
"\n",
|
1155 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
|
1156 |
+
" /* fitted */\n",
|
1157 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1158 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1159 |
+
"}\n",
|
1160 |
+
"\n",
|
1161 |
+
"/* On hover */\n",
|
1162 |
+
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
|
1163 |
+
" /* unfitted */\n",
|
1164 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1165 |
+
" color: var(--sklearn-color-background);\n",
|
1166 |
+
" text-decoration: none;\n",
|
1167 |
+
"}\n",
|
1168 |
+
"\n",
|
1169 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
|
1170 |
+
" /* fitted */\n",
|
1171 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1172 |
+
"}\n",
|
1173 |
+
"</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1174 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1175 |
+
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
|
1176 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
1177 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
1178 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
1179 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
1180 |
+
" max_delta_step=None, max_depth=6, max_leaves=None,\n",
|
1181 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
1182 |
+
" multi_strategy=None, n_estimators=100, n_jobs=None,\n",
|
1183 |
+
" num_parallel_tree=None, random_state=42, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> XGBRegressor<span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1184 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1185 |
+
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
|
1186 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
1187 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
1188 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
1189 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
1190 |
+
" max_delta_step=None, max_depth=6, max_leaves=None,\n",
|
1191 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
1192 |
+
" multi_strategy=None, n_estimators=100, n_jobs=None,\n",
|
1193 |
+
" num_parallel_tree=None, random_state=42, ...)</pre></div> </div></div></div></div>"
|
1194 |
+
]
|
1195 |
+
},
|
1196 |
+
"metadata": {},
|
1197 |
+
"execution_count": 12
|
1198 |
+
}
|
1199 |
+
],
|
1200 |
+
"source": [
|
1201 |
+
"xgb_model = XGBRegressor(\n",
|
1202 |
+
" n_estimators=100,\n",
|
1203 |
+
" learning_rate=0.1,\n",
|
1204 |
+
" max_depth=6,\n",
|
1205 |
+
" random_state=42,\n",
|
1206 |
+
" verbosity=1\n",
|
1207 |
+
")\n",
|
1208 |
+
"\n",
|
1209 |
+
"# Train the model\n",
|
1210 |
+
"xgb_model.fit(X_train, y_train)"
|
1211 |
+
]
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"cell_type": "code",
|
1215 |
+
"execution_count": 14,
|
1216 |
+
"metadata": {
|
1217 |
+
"id": "4moppOvOFnZD"
|
1218 |
+
},
|
1219 |
+
"outputs": [],
|
1220 |
+
"source": [
|
1221 |
+
"# Predict on the test set\n",
|
1222 |
+
"y_pred = xgb_model.predict(X_test)"
|
1223 |
+
]
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"cell_type": "code",
|
1227 |
+
"execution_count": 15,
|
1228 |
+
"metadata": {
|
1229 |
+
"colab": {
|
1230 |
+
"base_uri": "https://localhost:8080/"
|
1231 |
+
},
|
1232 |
+
"id": "xIwFbkEyNuby",
|
1233 |
+
"outputId": "2f9fb71f-b828-41b6-e9bb-2a5747a18444"
|
1234 |
+
},
|
1235 |
+
"outputs": [
|
1236 |
+
{
|
1237 |
+
"output_type": "execute_result",
|
1238 |
+
"data": {
|
1239 |
+
"text/plain": [
|
1240 |
+
"array([[21.514431 , 20.075377 , 5.7195935, 48.045883 ],\n",
|
1241 |
+
" [19.894218 , 19.883572 , 10.0262985, 69.34461 ],\n",
|
1242 |
+
" [20.112694 , 20.007633 , 11.493458 , 73.78841 ],\n",
|
1243 |
+
" [12.975633 , 18.08273 , 7.1654763, 45.41951 ],\n",
|
1244 |
+
" [12.418544 , 18.560135 , 8.162864 , 59.944546 ],\n",
|
1245 |
+
" [12.637019 , 18.684196 , 8.962711 , 67.1194 ],\n",
|
1246 |
+
" [ 6.4134297, 20.612186 , 10.105451 , 60.0018 ],\n",
|
1247 |
+
" [ 5.8482485, 21.089592 , 10.060244 , 67.4093 ],\n",
|
1248 |
+
" [ 5.8482485, 20.968369 , 10.259554 , 74.447716 ],\n",
|
1249 |
+
" [ 4.295031 , 22.474957 , 10.036483 , 67.872734 ]], dtype=float32)"
|
1250 |
+
]
|
1251 |
+
},
|
1252 |
+
"metadata": {},
|
1253 |
+
"execution_count": 15
|
1254 |
+
}
|
1255 |
+
],
|
1256 |
+
"source": [
|
1257 |
+
"y_pred[:10]"
|
1258 |
+
]
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"cell_type": "markdown",
|
1262 |
+
"metadata": {
|
1263 |
+
"id": "b996833d"
|
1264 |
+
},
|
1265 |
+
"source": [
|
1266 |
+
"## 7️⃣ Evaluation Metrics\n",
|
1267 |
+
"Calculate MAPE, MSPE, RMSPE, and standard regression metrics."
|
1268 |
+
]
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"cell_type": "code",
|
1272 |
+
"execution_count": 16,
|
1273 |
+
"metadata": {
|
1274 |
+
"colab": {
|
1275 |
+
"base_uri": "https://localhost:8080/"
|
1276 |
+
},
|
1277 |
+
"id": "gL5b_8Fb_lyj",
|
1278 |
+
"outputId": "05c40163-4803-4788-cc3d-34d0e9438dea"
|
1279 |
+
},
|
1280 |
+
"outputs": [
|
1281 |
+
{
|
1282 |
+
"output_type": "stream",
|
1283 |
+
"name": "stderr",
|
1284 |
+
"text": [
|
1285 |
+
"<ipython-input-16-84545122e16d>:2: SettingWithCopyWarning: \n",
|
1286 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
1287 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
1288 |
+
"\n",
|
1289 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
1290 |
+
" df1['fit_time_res'] = (df1['batch_time'] / df1['batch']) * df1['samples'] * df1['epochs']\n"
|
1291 |
+
]
|
1292 |
+
}
|
1293 |
+
],
|
1294 |
+
"source": [
|
1295 |
+
"def manualCalculate(df1):\n",
|
1296 |
+
" df1['fit_time_res'] = (df1['batch_time'] / df1['batch']) * df1['samples'] * df1['epochs']\n",
|
1297 |
+
" return df1[['fit_time_res']]\n",
|
1298 |
+
"\n",
|
1299 |
+
"y_manual = manualCalculate(X_test[['batch_time', 'batch', 'samples', 'epochs']])"
|
1300 |
+
]
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"cell_type": "code",
|
1304 |
+
"execution_count": 17,
|
1305 |
+
"metadata": {
|
1306 |
+
"colab": {
|
1307 |
+
"base_uri": "https://localhost:8080/"
|
1308 |
+
},
|
1309 |
+
"id": "zHc7GLmw_eDu",
|
1310 |
+
"outputId": "7240f37a-3dc2-4ae9-a3ac-08b977714fbd"
|
1311 |
+
},
|
1312 |
+
"outputs": [
|
1313 |
+
{
|
1314 |
+
"output_type": "stream",
|
1315 |
+
"name": "stdout",
|
1316 |
+
"text": [
|
1317 |
+
"Target Column 1:\n",
|
1318 |
+
" MSE: 1245.5831\n",
|
1319 |
+
" RMSE: 35.2928\n",
|
1320 |
+
" MAPE: 35.2928%\n",
|
1321 |
+
" MSPE: 42.7299%\n",
|
1322 |
+
" RMSPE: 6.5368%\n",
|
1323 |
+
"Target Column 2:\n",
|
1324 |
+
" MSE: 4263.1022\n",
|
1325 |
+
" RMSE: 65.2924\n",
|
1326 |
+
" MAPE: 65.2924%\n",
|
1327 |
+
" MSPE: 43.7782%\n",
|
1328 |
+
" RMSPE: 6.6165%\n",
|
1329 |
+
"Target Column 3:\n",
|
1330 |
+
" MSE: 99.2517\n",
|
1331 |
+
" RMSE: 9.9625\n",
|
1332 |
+
" MAPE: 9.9625%\n",
|
1333 |
+
" MSPE: inf%\n",
|
1334 |
+
" RMSPE: inf%\n",
|
1335 |
+
"Target Column 4:\n",
|
1336 |
+
" MSE: 456.3985\n",
|
1337 |
+
" RMSE: 21.3635\n",
|
1338 |
+
" MAPE: 21.3635%\n",
|
1339 |
+
" MSPE: inf%\n",
|
1340 |
+
" RMSPE: inf%\n"
|
1341 |
+
]
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"output_type": "execute_result",
|
1345 |
+
"data": {
|
1346 |
+
"text/plain": [
|
1347 |
+
"['xgb_model_model.pkl']"
|
1348 |
+
]
|
1349 |
+
},
|
1350 |
+
"metadata": {},
|
1351 |
+
"execution_count": 17
|
1352 |
+
}
|
1353 |
+
],
|
1354 |
+
"source": [
|
1355 |
+
"\n",
|
1356 |
+
"\n",
|
1357 |
+
"mape__per_column, mspe_per_column, rmspe_per_column = calculate_mspe_rmspe(y_test, y_pred)\n",
|
1358 |
+
"\n",
|
1359 |
+
"mse_per_column = mean_squared_error(y_test, y_pred, multioutput='raw_values') # MSE for each column\n",
|
1360 |
+
"rmse_per_column = np.sqrt(mse_per_column) # RMSE for each column\n",
|
1361 |
+
"\n",
|
1362 |
+
"# Display results\n",
|
1363 |
+
"for i, (mse, rmse, mape, mspe, rmspe) in enumerate(zip(mse_per_column, rmse_per_column, mape__per_column, mspe_per_column, rmspe_per_column)):\n",
|
1364 |
+
" print(f\"Target Column {i + 1}:\")\n",
|
1365 |
+
" print(f\" MSE: {mse:.4f}\")\n",
|
1366 |
+
" print(f\" RMSE: {rmse:.4f}\")\n",
|
1367 |
+
" print(f\" MAPE: {rmse:.4f}%\")\n",
|
1368 |
+
" print(f\" MSPE: {mspe:.4f}%\")\n",
|
1369 |
+
" print(f\" RMSPE: {rmspe:.4f}%\")\n",
|
1370 |
+
"\n",
|
1371 |
+
"# Save the model for future use\n",
|
1372 |
+
"joblib.dump(xgb_model, 'xgb_model_model.pkl')\n",
|
1373 |
+
"\n",
|
1374 |
+
"# Example of loading the model\n",
|
1375 |
+
"# loaded_model = joblib.load('random_forest_model.pkl')"
|
1376 |
+
]
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"cell_type": "code",
|
1380 |
+
"execution_count": 18,
|
1381 |
+
"metadata": {
|
1382 |
+
"colab": {
|
1383 |
+
"base_uri": "https://localhost:8080/"
|
1384 |
+
},
|
1385 |
+
"id": "VR0GKYPTBQqu",
|
1386 |
+
"outputId": "6ae3a663-c9d8-4c9d-a4ea-7db03208de35"
|
1387 |
+
},
|
1388 |
+
"outputs": [
|
1389 |
+
{
|
1390 |
+
"output_type": "stream",
|
1391 |
+
"name": "stdout",
|
1392 |
+
"text": [
|
1393 |
+
"Target Column 1:\n",
|
1394 |
+
" MSE: 111.3580\n",
|
1395 |
+
" RMSE: 10.5526\n",
|
1396 |
+
" MAPE: 10.5526%\n"
|
1397 |
+
]
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"output_type": "execute_result",
|
1401 |
+
"data": {
|
1402 |
+
"text/plain": [
|
1403 |
+
"['xgb_model_model.pkl']"
|
1404 |
+
]
|
1405 |
+
},
|
1406 |
+
"metadata": {},
|
1407 |
+
"execution_count": 18
|
1408 |
+
}
|
1409 |
+
],
|
1410 |
+
"source": [
|
1411 |
+
"\n",
|
1412 |
+
"\n",
|
1413 |
+
"mape__per_column, mspe_per_column, rmspe_per_column = calculate_mspe_rmspe(y_test[['fit_time']], y_manual)\n",
|
1414 |
+
"\n",
|
1415 |
+
"mse_per_column = mean_squared_error(y_test[['fit_time']], y_manual, multioutput='raw_values') # MSE for each column\n",
|
1416 |
+
"rmse_per_column = np.sqrt(mse_per_column) # RMSE for each column\n",
|
1417 |
+
"\n",
|
1418 |
+
"# Display results\n",
|
1419 |
+
"for i, (mse, rmse, mape, mspe, rmspe) in enumerate(zip(mse_per_column, rmse_per_column, mape__per_column, mspe_per_column, rmspe_per_column)):\n",
|
1420 |
+
" print(f\"Target Column {i + 1}:\")\n",
|
1421 |
+
" print(f\" MSE: {mse:.4f}\")\n",
|
1422 |
+
" print(f\" RMSE: {rmse:.4f}\")\n",
|
1423 |
+
" print(f\" MAPE: {rmse:.4f}%\")\n",
|
1424 |
+
"\n",
|
1425 |
+
"# Save the model for future use\n",
|
1426 |
+
"joblib.dump(xgb_model, 'xgb_model_model.pkl')\n",
|
1427 |
+
"\n",
|
1428 |
+
"# Example of loading the model\n",
|
1429 |
+
"# loaded_model = joblib.load('random_forest_model.pkl')"
|
1430 |
+
]
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"cell_type": "code",
|
1434 |
+
"execution_count": 19,
|
1435 |
+
"metadata": {
|
1436 |
+
"id": "c0a4ea0a"
|
1437 |
+
},
|
1438 |
+
"outputs": [],
|
1439 |
+
"source": [
|
1440 |
+
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
|
1441 |
+
"import matplotlib.pyplot as plt\n",
|
1442 |
+
"import seaborn as sns\n",
|
1443 |
+
"import numpy as np"
|
1444 |
+
]
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"cell_type": "code",
|
1448 |
+
"execution_count": 22,
|
1449 |
+
"metadata": {
|
1450 |
+
"colab": {
|
1451 |
+
"base_uri": "https://localhost:8080/"
|
1452 |
+
},
|
1453 |
+
"id": "4f37c35d",
|
1454 |
+
"outputId": "6be2112f-41c1-4b0e-f367-f9ab8dd4f839"
|
1455 |
+
},
|
1456 |
+
"outputs": [
|
1457 |
+
{
|
1458 |
+
"output_type": "stream",
|
1459 |
+
"name": "stdout",
|
1460 |
+
"text": [
|
1461 |
+
"MAE: 24.9825\n",
|
1462 |
+
"RMSE: 32.9778\n",
|
1463 |
+
"R²: 0.2661\n"
|
1464 |
+
]
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"output_type": "stream",
|
1468 |
+
"name": "stderr",
|
1469 |
+
"text": [
|
1470 |
+
"/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:492: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.\n",
|
1471 |
+
" warnings.warn(\n"
|
1472 |
+
]
|
1473 |
+
}
|
1474 |
+
],
|
1475 |
+
"source": [
|
1476 |
+
"# Standard Regression Metrics\n",
|
1477 |
+
"mae = mean_absolute_error(y_test, y_pred)\n",
|
1478 |
+
"rmse = mean_squared_error(y_test, y_pred, squared=False)\n",
|
1479 |
+
"r2 = r2_score(y_test, y_pred)\n",
|
1480 |
+
"\n",
|
1481 |
+
"print(f'MAE: {mae:.4f}')\n",
|
1482 |
+
"print(f'RMSE: {rmse:.4f}')\n",
|
1483 |
+
"print(f'R²: {r2:.4f}')"
|
1484 |
+
]
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"cell_type": "markdown",
|
1488 |
+
"metadata": {
|
1489 |
+
"id": "c3eb4fc3"
|
1490 |
+
},
|
1491 |
+
"source": [
|
1492 |
+
"## 9️⃣ Conclusion\n",
|
1493 |
+
"Summarize key insights from the model performance and visualizations."
|
1494 |
+
]
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"cell_type": "markdown",
|
1498 |
+
"metadata": {
|
1499 |
+
"id": "c78d5e48"
|
1500 |
+
},
|
1501 |
+
"source": [
|
1502 |
+
"### ✅ In Conclusion:\n",
|
1503 |
+
"- The XGBoost model provides a reasonable baseline for predicting CNN resource usage.\n",
|
1504 |
+
"- Visualization highlights areas where predictions deviate.\n",
|
1505 |
+
"- Feature importance gives insights into which factors most influence fit time.\n",
|
1506 |
+
"\n",
|
1507 |
+
"For future work, hyperparameter tuning and advanced models could improve accuracy."
|
1508 |
+
]
|
1509 |
+
}
|
1510 |
+
],
|
1511 |
+
"metadata": {
|
1512 |
+
"accelerator": "GPU",
|
1513 |
+
"colab": {
|
1514 |
+
"gpuType": "T4",
|
1515 |
+
"provenance": []
|
1516 |
+
},
|
1517 |
+
"kernelspec": {
|
1518 |
+
"display_name": "Python 3",
|
1519 |
+
"name": "python3"
|
1520 |
+
},
|
1521 |
+
"language_info": {
|
1522 |
+
"name": "python"
|
1523 |
+
}
|
1524 |
+
},
|
1525 |
+
"nbformat": 4,
|
1526 |
+
"nbformat_minor": 0
|
1527 |
+
}
|