|
from typing import List, Union |
|
from abc import ABC, abstractmethod |
|
|
|
import numpy as np |
|
from PIL import Image |
|
from sklearn.datasets import make_s_curve, make_swiss_roll |
|
|
|
|
|
class DataExpander(ABC): |
|
"""Abstract class for data expander with different distribution.""" |
|
|
|
@abstractmethod |
|
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray: |
|
"""Return the expanded data to size.""" |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def available_data(self, data: np.ndarray, **kwargs) -> np.ndarray: |
|
"""Return the available data.""" |
|
raise NotImplementedError |
|
|
|
|
|
class AnchorExpander(DataExpander): |
|
"""Class for anchor expander with different distribution. |
|
|
|
Args: |
|
expand_type (str): expand type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. |
|
""" |
|
|
|
def __init__(self, expand_type: str = 'duplicate'): |
|
self.expand_type = expand_type |
|
self.type_map = { |
|
'duplicate': self.duplicate, |
|
'uniform': self.uniform, |
|
'gauss': self.gauss, |
|
} |
|
|
|
def _get_anchor_number(self, anchors: np.ndarray): |
|
"""Return the number of anchors.""" |
|
assert anchors.ndim == 2 , "anchors should be 2D array." |
|
assert anchors.shape[1] == 2 or anchors.shape[1] == 4, "each anchor shaped as (cx, cy) or (cx, cy, w, h)." |
|
return anchors.shape[0] |
|
|
|
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray: |
|
"""Return the expanded data to size.""" |
|
anchor_num = self._get_anchor_number(data) + 1 |
|
expand_space = np.linspace(0, size, anchor_num).astype(int) |
|
expand_num = expand_space[1:] - expand_space[:-1] |
|
|
|
return self.type_map[self.expand_type](data, expand_num) |
|
|
|
def available_data(self, data: np.ndarray, type=np.float32, **kwargs) -> np.ndarray: |
|
"""Return the available anchors ranged [0, 1] with type.""" |
|
data[:, 0::2] = np.clip(data[:, 0::2], 0, 1) |
|
data[:, 1::2] = np.clip(data[:, 1::2], 0, 1) |
|
if data.dtype != type: |
|
data = data.astype(type) |
|
return data |
|
|
|
def duplicate(self, anchors: np.ndarray, expand_num: np.ndarray): |
|
"""Duplicate each anchor form anchors to expand_num.""" |
|
return anchors.repeat(expand_num, axis=0) |
|
|
|
def uniform(self, anchors: np.ndarray, expand_num: np.ndarray): |
|
"""Uniformly expand each anchor form anchors to expand_num in anchor region.""" |
|
assert anchors.shape[1] == 4, "Uniformly expand only support anchors shaped as (cx, cy, w, h)." |
|
new_anchors = [] |
|
for n, (cx, cy, w, h) in zip(expand_num, anchors): |
|
lt = [cx - w / 2, cy - h / 2] |
|
rb = [cx + w / 2, cy + h / 2] |
|
new_anchors.append(np.random.uniform(lt, rb, (n, 2))) |
|
return np.concatenate(new_anchors, axis=0) |
|
|
|
def gauss(self, anchors: np.ndarray, expand_num: np.ndarray): |
|
"""Gaussian expand each anchor form anchors to expand_num in anchor region.""" |
|
assert anchors.shape[1] == 4, "Gaussian expand only support anchors shaped as (cx, cy, w, h)." |
|
new_anchors = [] |
|
for n, (cx, cy, w, h) in zip(expand_num, anchors): |
|
new_anchors.append(np.random.multivariate_normal([cx, cy], [[w, 0], [0, h]], n)) |
|
return np.concatenate(new_anchors, axis=0) |
|
|
|
|
|
class DataDistributor(ABC): |
|
"""Abstract class for data distributor.""" |
|
|
|
@abstractmethod |
|
def get_distribution(self, data: np.ndarray, **kwargs): |
|
"""Return the data distribution.""" |
|
raise NotImplementedError |
|
|
|
|
|
class AnchorDistributor(DataDistributor, AnchorExpander): |
|
"""Abstract class for anchor distributor. |
|
|
|
Args: |
|
width (int): width of the distribution. |
|
height (int): height of the distribution. |
|
depth (int): depth of the distribution. Default: 1. |
|
expand_type (str): type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. |
|
""" |
|
|
|
def __init__(self, width: int, height: int, depth: int = 1, |
|
expand_type: str = 'duplicate'): |
|
self.width = width |
|
self.height = height |
|
self.depth = depth |
|
AnchorExpander.__init__(self, expand_type) |
|
|
|
@property |
|
def dis_point_num(self): |
|
"""Return the number of expanded distribution points.""" |
|
return int(self.width * self.height) |
|
|
|
def get_distribution(self, data: np.ndarray, type: str = '1d', **kwargs): |
|
"""Return the anchor distribution.""" |
|
if type == '1d': |
|
return self.to_1d_distribution(data) |
|
elif type == 'img': |
|
return self.to_img_distribution(data) |
|
else: |
|
raise ValueError(f"Unsupported distribute type {type}.") |
|
|
|
def to_1d_distribution(self, anchors: np.ndarray): |
|
"""Return the 1D distribution of anchors shaped [NxD, *].""" |
|
anchors = np.repeat(anchors, self.depth, axis=0) |
|
return anchors |
|
|
|
def to_img_distribution(self, anchors: np.ndarray) -> Image.Image: |
|
"""Return the Image filled distribution of anchors.""" |
|
assert self.depth == 1 or self.depth == 3, "Only support depth 1 (GRAY) or 3(RGB)." |
|
img = filled_anchors(anchors, self.width, self.height) |
|
gray_img = Image.fromarray(img, mode='L') |
|
if self.depth == 1: |
|
return gray_img |
|
else: |
|
return gray_img.convert('RGB') |
|
|
|
|
|
def filled_anchors(anchors: np.ndarray, width: int, height: int) -> np.ndarray: |
|
"""Return the hist filled in distributed anchors' c_xy along (x,y) shaped [W, H].""" |
|
assert anchors.ndim == 2, "anchors should be 2D array." |
|
assert anchors.max() <= 1 and anchors.min() >= 0, "anchors should be ranged [0, 1]." |
|
|
|
anchor_cxcy = (anchors[:, :2] * np.array([width-1, height-1])).astype(int) |
|
anchor_unique, anchor_counts = np.unique(anchor_cxcy, axis=0, return_counts=True) |
|
anchor_counts = anchor_counts * 255.0 / anchor_counts.max() |
|
anchor_counts = anchor_counts.astype(int).clip(0, 255) |
|
anchor_index = anchor_unique[:, 1], anchor_unique[:, 0] |
|
hist = np.zeros((width, height), dtype=np.uint8) |
|
hist[anchor_index] = anchor_counts |
|
return hist |
|
|
|
|
|
class CustomAnchorShape(AnchorDistributor): |
|
"""Custom anchor shape distributor. |
|
|
|
Args: |
|
width (int): width of the distribution. |
|
height (int): height of the distribution. |
|
depth (int): depth of the distribution. Default: 1. |
|
custom_data (List[Union[np.ndarray, str]]): custom data to be added to the sample. Include `s_curve`, `swiss_roll` and `custom_anchor`. |
|
custom_anchor_combination (bool): whether to combine custom anchors. |
|
custom_anchor_relative_coord (bool): whether the custom anchor is relative coordinate. |
|
expand_type (str): how to expand the anchor. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. |
|
""" |
|
|
|
def __init__(self, width: int, height: int, |
|
depth: int = 1, |
|
custom_data: List[Union[np.ndarray, str]] = [], |
|
custom_anchor_combination: bool = False, |
|
custom_anchor_relative_coord: bool = True, |
|
expand_type: str = 'duplicate',): |
|
AnchorDistributor.__init__(self, width, height, depth, expand_type) |
|
self.custom_anchor_combination = custom_anchor_combination |
|
self.custom_anchor_relative_coord = custom_anchor_relative_coord |
|
self.custom_shapes = [data for data in custom_data if isinstance(data, str)] |
|
self.custom_anchors = [data for data in custom_data if isinstance(data, (np.ndarray, list, tuple))] |
|
|
|
@property |
|
def custom_shapes(self): |
|
return self._custom_shapes |
|
|
|
@custom_shapes.setter |
|
def custom_shapes(self, value: List[str]): |
|
shapes = [] |
|
for shape in value: |
|
assert isinstance(shape, str), "Custom shape must be str." |
|
shapes.append(self._get_spical_shape(shape)) |
|
self._custom_shapes = shapes |
|
|
|
@property |
|
def custom_anchors(self): |
|
return self._custom_anchors |
|
|
|
@custom_anchors.setter |
|
def custom_anchors(self, value: List[np.ndarray]): |
|
anchors = [] |
|
for anchor in value: |
|
if isinstance(anchor, (list, tuple)): |
|
if not isinstance(anchor[0], (list, tuple)): |
|
anchor = [anchor] |
|
anchor = np.array(anchor) |
|
assert isinstance(anchor, np.ndarray), "Custom anchor must be np.ndarray." |
|
anchors.append(anchor) |
|
self._custom_anchors = self._get_anchor_combinations(anchors) |
|
|
|
@property |
|
def custom_data(self): |
|
return self.custom_shapes + self.custom_anchors |
|
|
|
def _get_spical_shape(self, shape_name: str, type=np.float32) -> np.ndarray: |
|
"""Get special shape data shaped [N, 2]. Range [0, 1]""" |
|
if shape_name == 's_curve': |
|
shape = make_s_curve(self.dis_point_num, noise=0.1)[0] |
|
shape = shape[:, [0, 2]] |
|
elif shape_name == 'swiss_roll': |
|
shape = make_swiss_roll(self.dis_point_num, noise=0.5)[0] |
|
shape = shape[:, [0, 2]] |
|
else: |
|
raise ValueError(f"Not supported shape {shape_name}. Only support 's_curve' or 'swiss_roll'.") |
|
shape[:, 0] = (shape[:, 0] - shape[:, 0].min()) / (shape[:, 0].max() - shape[:, 0].min()) |
|
shape[:, 1] = (shape[:, 1] - shape[:, 1].min()) / (shape[:, 1].max() - shape[:, 1].min()) |
|
return shape.astype(type) |
|
|
|
def _pad_custom_anchor(self, anchor:np.ndarray): |
|
"""Pad custom anchor num to `self.dis_point_num`.""" |
|
if not self.custom_anchor_relative_coord: |
|
anchor = anchor / np.array([self.width, self.height]) |
|
anchor = self.expand_data(anchor, self.dis_point_num) |
|
return self.available_data(anchor) |
|
|
|
def _get_anchor_combinations(self, anchors: np.ndarray) -> np.ndarray: |
|
"""Get combinations of anchors shaped [C(N, 1)+...+C(N, N), N, 2].""" |
|
comb_anchors = [] |
|
if self.custom_anchor_combination: |
|
from itertools import combinations |
|
index = np.arange(len(anchors)) |
|
for r in index: |
|
for comb_i in combinations(index, r+1): |
|
comb = np.concatenate([anchors[i] for i in comb_i], axis=0) |
|
comb_anchors.append(self._pad_custom_anchor(comb)) |
|
else: |
|
for anchor in anchors: |
|
comb_anchors.append(self._pad_custom_anchor(anchor)) |
|
return comb_anchors |
|
|