CustomAnchorShape / CustomAnchorShapeGenerator.py
JadeRay-42's picture
img test
5d3adef
from typing import List, Union
from abc import ABC, abstractmethod
import numpy as np
from PIL import Image
from sklearn.datasets import make_s_curve, make_swiss_roll
class DataExpander(ABC):
"""Abstract class for data expander with different distribution."""
@abstractmethod
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray:
"""Return the expanded data to size."""
raise NotImplementedError
@abstractmethod
def available_data(self, data: np.ndarray, **kwargs) -> np.ndarray:
"""Return the available data."""
raise NotImplementedError
class AnchorExpander(DataExpander):
"""Class for anchor expander with different distribution.
Args:
expand_type (str): expand type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
"""
def __init__(self, expand_type: str = 'duplicate'):
self.expand_type = expand_type
self.type_map = {
'duplicate': self.duplicate,
'uniform': self.uniform,
'gauss': self.gauss,
}
def _get_anchor_number(self, anchors: np.ndarray):
"""Return the number of anchors."""
assert anchors.ndim == 2 , "anchors should be 2D array."
assert anchors.shape[1] == 2 or anchors.shape[1] == 4, "each anchor shaped as (cx, cy) or (cx, cy, w, h)."
return anchors.shape[0]
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray:
"""Return the expanded data to size."""
anchor_num = self._get_anchor_number(data) + 1
expand_space = np.linspace(0, size, anchor_num).astype(int)
expand_num = expand_space[1:] - expand_space[:-1]
return self.type_map[self.expand_type](data, expand_num)
def available_data(self, data: np.ndarray, type=np.float32, **kwargs) -> np.ndarray:
"""Return the available anchors ranged [0, 1] with type."""
data[:, 0::2] = np.clip(data[:, 0::2], 0, 1)
data[:, 1::2] = np.clip(data[:, 1::2], 0, 1)
if data.dtype != type:
data = data.astype(type)
return data
def duplicate(self, anchors: np.ndarray, expand_num: np.ndarray):
"""Duplicate each anchor form anchors to expand_num."""
return anchors.repeat(expand_num, axis=0)
def uniform(self, anchors: np.ndarray, expand_num: np.ndarray):
"""Uniformly expand each anchor form anchors to expand_num in anchor region."""
assert anchors.shape[1] == 4, "Uniformly expand only support anchors shaped as (cx, cy, w, h)."
new_anchors = []
for n, (cx, cy, w, h) in zip(expand_num, anchors):
lt = [cx - w / 2, cy - h / 2]
rb = [cx + w / 2, cy + h / 2]
new_anchors.append(np.random.uniform(lt, rb, (n, 2)))
return np.concatenate(new_anchors, axis=0)
def gauss(self, anchors: np.ndarray, expand_num: np.ndarray):
"""Gaussian expand each anchor form anchors to expand_num in anchor region."""
assert anchors.shape[1] == 4, "Gaussian expand only support anchors shaped as (cx, cy, w, h)."
new_anchors = []
for n, (cx, cy, w, h) in zip(expand_num, anchors):
new_anchors.append(np.random.multivariate_normal([cx, cy], [[w, 0], [0, h]], n))
return np.concatenate(new_anchors, axis=0)
class DataDistributor(ABC):
"""Abstract class for data distributor."""
@abstractmethod
def get_distribution(self, data: np.ndarray, **kwargs):
"""Return the data distribution."""
raise NotImplementedError
class AnchorDistributor(DataDistributor, AnchorExpander):
"""Abstract class for anchor distributor.
Args:
width (int): width of the distribution.
height (int): height of the distribution.
depth (int): depth of the distribution. Default: 1.
expand_type (str): type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
"""
def __init__(self, width: int, height: int, depth: int = 1,
expand_type: str = 'duplicate'):
self.width = width
self.height = height
self.depth = depth
AnchorExpander.__init__(self, expand_type)
@property
def dis_point_num(self):
"""Return the number of expanded distribution points."""
return int(self.width * self.height)
def get_distribution(self, data: np.ndarray, type: str = '1d', **kwargs):
"""Return the anchor distribution."""
if type == '1d':
return self.to_1d_distribution(data)
elif type == 'img':
return self.to_img_distribution(data)
else:
raise ValueError(f"Unsupported distribute type {type}.")
def to_1d_distribution(self, anchors: np.ndarray):
"""Return the 1D distribution of anchors shaped [NxD, *]."""
anchors = np.repeat(anchors, self.depth, axis=0)
return anchors
def to_img_distribution(self, anchors: np.ndarray) -> Image.Image:
"""Return the Image filled distribution of anchors."""
assert self.depth == 1 or self.depth == 3, "Only support depth 1 (GRAY) or 3(RGB)."
img = filled_anchors(anchors, self.width, self.height)
gray_img = Image.fromarray(img, mode='L')
if self.depth == 1:
return gray_img
else:
return gray_img.convert('RGB')
def filled_anchors(anchors: np.ndarray, width: int, height: int) -> np.ndarray:
"""Return the hist filled in distributed anchors' c_xy along (x,y) shaped [W, H]."""
assert anchors.ndim == 2, "anchors should be 2D array."
assert anchors.max() <= 1 and anchors.min() >= 0, "anchors should be ranged [0, 1]."
anchor_cxcy = (anchors[:, :2] * np.array([width-1, height-1])).astype(int)
anchor_unique, anchor_counts = np.unique(anchor_cxcy, axis=0, return_counts=True)
anchor_counts = anchor_counts * 255.0 / anchor_counts.max()
anchor_counts = anchor_counts.astype(int).clip(0, 255)
anchor_index = anchor_unique[:, 1], anchor_unique[:, 0]
hist = np.zeros((width, height), dtype=np.uint8)
hist[anchor_index] = anchor_counts
return hist
class CustomAnchorShape(AnchorDistributor):
"""Custom anchor shape distributor.
Args:
width (int): width of the distribution.
height (int): height of the distribution.
depth (int): depth of the distribution. Default: 1.
custom_data (List[Union[np.ndarray, str]]): custom data to be added to the sample. Include `s_curve`, `swiss_roll` and `custom_anchor`.
custom_anchor_combination (bool): whether to combine custom anchors.
custom_anchor_relative_coord (bool): whether the custom anchor is relative coordinate.
expand_type (str): how to expand the anchor. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
"""
def __init__(self, width: int, height: int,
depth: int = 1,
custom_data: List[Union[np.ndarray, str]] = [],
custom_anchor_combination: bool = False,
custom_anchor_relative_coord: bool = True,
expand_type: str = 'duplicate',):
AnchorDistributor.__init__(self, width, height, depth, expand_type)
self.custom_anchor_combination = custom_anchor_combination
self.custom_anchor_relative_coord = custom_anchor_relative_coord
self.custom_shapes = [data for data in custom_data if isinstance(data, str)]
self.custom_anchors = [data for data in custom_data if isinstance(data, (np.ndarray, list, tuple))]
@property
def custom_shapes(self):
return self._custom_shapes
@custom_shapes.setter
def custom_shapes(self, value: List[str]):
shapes = []
for shape in value:
assert isinstance(shape, str), "Custom shape must be str."
shapes.append(self._get_spical_shape(shape))
self._custom_shapes = shapes
@property
def custom_anchors(self):
return self._custom_anchors
@custom_anchors.setter
def custom_anchors(self, value: List[np.ndarray]):
anchors = []
for anchor in value:
if isinstance(anchor, (list, tuple)):
if not isinstance(anchor[0], (list, tuple)):
anchor = [anchor]
anchor = np.array(anchor)
assert isinstance(anchor, np.ndarray), "Custom anchor must be np.ndarray."
anchors.append(anchor)
self._custom_anchors = self._get_anchor_combinations(anchors)
@property
def custom_data(self):
return self.custom_shapes + self.custom_anchors
def _get_spical_shape(self, shape_name: str, type=np.float32) -> np.ndarray:
"""Get special shape data shaped [N, 2]. Range [0, 1]"""
if shape_name == 's_curve':
shape = make_s_curve(self.dis_point_num, noise=0.1)[0]
shape = shape[:, [0, 2]]
elif shape_name == 'swiss_roll':
shape = make_swiss_roll(self.dis_point_num, noise=0.5)[0]
shape = shape[:, [0, 2]]
else:
raise ValueError(f"Not supported shape {shape_name}. Only support 's_curve' or 'swiss_roll'.")
shape[:, 0] = (shape[:, 0] - shape[:, 0].min()) / (shape[:, 0].max() - shape[:, 0].min())
shape[:, 1] = (shape[:, 1] - shape[:, 1].min()) / (shape[:, 1].max() - shape[:, 1].min())
return shape.astype(type)
def _pad_custom_anchor(self, anchor:np.ndarray):
"""Pad custom anchor num to `self.dis_point_num`."""
if not self.custom_anchor_relative_coord:
anchor = anchor / np.array([self.width, self.height])
anchor = self.expand_data(anchor, self.dis_point_num)
return self.available_data(anchor)
def _get_anchor_combinations(self, anchors: np.ndarray) -> np.ndarray:
"""Get combinations of anchors shaped [C(N, 1)+...+C(N, N), N, 2]."""
comb_anchors = []
if self.custom_anchor_combination:
from itertools import combinations
index = np.arange(len(anchors))
for r in index:
for comb_i in combinations(index, r+1):
comb = np.concatenate([anchors[i] for i in comb_i], axis=0)
comb_anchors.append(self._pad_custom_anchor(comb))
else:
for anchor in anchors:
comb_anchors.append(self._pad_custom_anchor(anchor))
return comb_anchors